分子动力学模拟
-
什么是非平衡分子动力学模拟?
非平衡分子动力学模拟是一种研究系统在外界扰动下行为的计算方法,与传统的平衡态分子动力学不同,它通过施加外场(如温度梯度、电场、剪切力等)打破系统的热力学平衡,从而模拟实际非平衡过程…
-
均方位移(MSD) 如何定量解析粒子运动模式?
MSD(Mean Square Displacement,均方位移)是描述粒子运动的一项重要物理量。它衡量了粒子在单位时间内的平均位移的平方,通常用于研究粒子的扩散行为、物质的热运…
-
分子动力学怎么加磁场?
研究磁场下的分子动力学模拟,主要是为了深入理解外磁场对材料和分子体系微观结构与动力学行为的影响。磁场能够调控自旋状态、电子分布和分子排列,从而改变物理、化学性质和功能表现。 在能源…
-
99.7%!四川大学AEM:动态交联柔性水凝胶电解质助力无枝晶锌负极
水性锌离子电池(AZIBs)因其环保、安全且低成本的特点,在柔性电子和先进储能领域极具潜力。然而,传统电解质中锌枝晶生长、副反应及机械不稳定性等问题限制了其实际应用。 在此,四川大…
-
3500小时!华科/物理所Angew:聚合物电偶极效应增强准固态钠金属电池
钠金属负极的界面不稳定性严重阻碍了钠金属电池的实际应用。根据双电层(EDL)理论,亥姆霍兹层的电势差对电极/电解质界面的电化学反应至关重要,其决定了固体电解质界面相(SEI)的组成…
-
如何通过分子动力学模拟设计高性能电解液?溶剂选择、锂盐配比与添加剂优化的多尺度分析
本文围绕电解液的组成、分类及其在锂离子电池中的应用进行了深入分析,介绍了电解液的主要成分,包括溶剂、锂盐和添加剂,以及它们在电池性能中的重要作用。 同时,也探讨了分子动力学模拟作为…
-
为何选择MD?分子动力学模拟在电解液研究中的应用
基本原理与核心概念 分子动力学(MD)模拟基于牛顿运动方程,通过追踪每个原子的轨迹来揭示体系的动态行为。其核心在于ergodic定理的适用性,即体系的时间平均与系综平均等价[7]。…
-
什么是AIMD从头算分子动力学?
从头算分子动力学(Ab initio Molecular Dynamics,AIMD)是一种结合了量子力学从头算方法和分子动力学模拟的计算方法,其基本原理与计算方法如下: 基本原理…
-
如何模拟离子扩散?均方位移(MSD)理论与跨尺度应用解析!
均方位移(MSD)是分子动力学模拟中表征粒子扩散行为的关键指标。本文系统介绍了MSD的理论基础、计算方法和特征规律,重点展示了其在电池(离子迁移)、催化(质子扩散)、合金(高温变形…
-
机器学习势函数 VS 分子动力学(MD)模拟
机器学习势函数的定义与基本原理 机器学习势函数(Machine Learning Potentials, MLFFs)是一种基于机器学习技术的势能函数,用于模拟分子和材料的物理行为…
-
分子动力学模拟:原理、步骤、软件、方法!
在微观世界中,分子的动态行为如同一场精妙的舞蹈,深刻影响着物质的性质和功能。分子动力学模拟(Molecular Dynamics, MD)作为探索分子尺度奥秘的强大工具,是一种基于…
-
光催化可以进行哪些理论计算?
本文从理论计算角度分析了光催化剂的关键性能,涵盖电子结构、光学特性、载流子输运、表面反应及稳定性等方面。 通过密度泛函理论(DFT)解析能带结构、缺陷效应及掺杂调控,探讨光吸收性能…
-
1000 mA cm-2!华东理工大学杨化桂/刘鹏飞/练成,新发Nature子刊
最近,在开发用于电化学乙二醇氧化(EGOR)的高效和持久的电催化剂方面取得了相当大的进展,包括过渡金属磷酸盐、硒酸盐、针对产生甲酸(FA)的硫酸盐以及优化用于乙二醇酸(GA)生成的…
-
DFT计算还是MD模拟?——两种主流计算方法的正确应用方式
本文系统比较了第一性原理计算(以密度泛函理论为代表)与分子动力学模拟在材料研究中的理论基础、应用特征与适用边界。 第一性原理计算以电子结构为核心,擅长于吸附行为、反应路径与过渡态分…
-
如何通过RDF分析材料结构?
本文系统介绍了径向分布函数(RDF)的定义、数学表达及其在分子动力学(MD)模拟中的核心作用。 RDF通过量化粒子间距的概率分布,能够揭示材料短程有序性和长程无序性特征,成为解析微…
-
分子动力学模拟(Molecular Dynamics, MD)
分子动力学模拟(Molecular Dynamics, MD)是一种通过经典力学方法研究原子和分子随时间演化行为的计算模拟技术。 其基本思想是根据牛顿第二定律,利用原子间相互作用的…
-
从头算分子动力学AIMD与经典分子动力学MD的计算成本与精度分析:时间尺度、系统尺寸与力场依赖性
分子动力学模拟的介绍 分子动力学模拟(Molecular Dynamics Simulation, MD)是一种基于经典力学或量子力学原理的计算方法,通过数值求解粒子系统的运动方程…
-
苏州大学,Nature Water!
全球水资源短缺问题日益严峻,超过三分之一人口面临水资源压力,预计到2025年该比例将升至近三分之二。反渗透(RO)膜技术作为海水淡化和水回用的核心手段,依赖于界面聚合制备的聚酰胺膜…