交叉学科
-
为什么电负性越大氢键越强?
说明:本文华算科技将深入探讨“为什么电负性越大,氢键越强”这一问题,系统阐述电负性如何影响氢键的形成及其强度,并结合实际应用进行分析。 我们将通过对氢键基本概念的介绍,电负性与氢键…
-
DFT模拟下的外加电势与电荷重分布:电催化反应的理论基础与应用
说明:本文华算科技首先介绍外加电势对电催化反应的作用,包括如何通过密度泛函理论(DFT)模拟电极电位的影响、计算电化学势与热力学自由能变化。 随后讨论界面电场和双电层效应,如异质结…
-
活性中心:催化反应的核心引擎——从电子结构到多尺度表征的系统解析
说明:本文华算科技介绍了催化活性中心的定义、核心特征(电子结构、配位环境、空间构型)、研究三阶段及表征方法(静态、原位及多表征联用)。读者可系统学习到活性中心本质及研究演进,了解如…
-
一文贯通:从吸附能到 d 带中心 —— 第一性原理 + 电催化的完整研究框架
第一性原理+电催化的一体化研究路径:以DFT为核心,计算吸附能与自由能台阶,构建CHE模型与火山图,筛选HER/OER/ORR/CO₂RR活性位;结合NEB揭示过渡态与势垒,DOS…
-
氧空位:调控材料性能的关键密码
说明:本文华算科技介绍了氧空位,涵盖其定义、构建方法(如热处理法、氧化还原反应、电化学法等)、表征技术(像XPS、拉曼光谱等)及作用(提升催化性能、优化光学和电学特性等)。读者可系…
-
氧空位:金属氧化物的“缺陷”逆袭之路
总结:从“坏缺陷”到“神助攻”,氧空位正改写金属氧化物的命运。一个氧原子的离去,重排局域键合与电荷,拉低带隙、放出自由电子,让绝缘体变半导体甚至近金属。 在表面,它化身未配位活性位…
-
一文说清“氧空位”:定义、制备方法、四种精准表征技术
说明:本文由华算科技系统介绍了氧空位的定义、制备方法及EPR、Raman、XAFS、XPS四种精准表征技术,读者可借此迅速搭建氧空位知识框架,学会按需设计缺陷、精准检测并高效提升催…
-
什么是“金属空位”?——定义、形成难点与独特优势
说明:本文由华算科技系统梳理了金属空位的定义、形成难点与独特优势,详解了合成诱导、后合成两类构建策略,并示范了XPS、EPR、XAFS、PDF、PALS等精准表征手段,读者可一次掌…
-
吸附能 VS 结合能:定义、计算与应用
在理论计算与材料科学研究中,能量是评价体系稳定性与相互作用强度的核心物理量。其中,吸附能(adsorption energy)与结合能(binding energy)是被频繁使用的…
-
同步辐射XAFS技术:揭示氧空位形成机制与性能调控
说明:同步辐射XAFS技术通过分析吸收原子周围的局部配位环境(如键长、配位数变化),能够灵敏地探测材料中的氧空位等缺陷。本文华算科技结合多个前沿案例,阐述了该技术在揭示空位形成机制…