掺杂
-
深入剖析掺杂对态密度的多维影响
掺杂对材料的态密度(Density of States, DOS)具有显著影响,这种影响不仅体现在材料的电子结构上,还直接关系到其电学、光学和热学等物理性质。以下将从多个角度详细探…
-
掺杂对半导体能带结构影响的深入剖析
掺杂对半导体能带结构的影响是一个复杂而重要的研究领域,涉及材料科学、凝聚态物理和电子工程等多个学科。掺杂是指通过向半导体材料中引入特定的杂质原子,以改变其电子结构和导电性能。这种改…
-
钴磷化物(CoP)的催化行为与作用机制:基于实验与理论计算的研究进展
钴磷化物(CoP)作为一种重要的过渡金属磷化物,近年来在催化领域中展现出卓越的性能,尤其是在水分解、氮气还原、氨硼烷水解等反应中表现出优异的催化活性和稳定性。 CoP的催化性能不仅…
-
N氮掺杂:原理、方法及其在催化领域的关键作用研究
总结:本文系统总结了氮(N)掺杂作为材料改性手段的原理、方法、优势及其在催化领域的具体应用。 N掺杂因其资源丰富、电子结构调控能力强以及适用材料广泛而被广泛应用,常采用高温氨气…
-
RuO₂催化性能:掺杂改性与界面工程设计
RuO₂(二氧化钌)作为一种重要的过渡金属氧化物,因其优异的催化性能而被广泛研究和应用。RuO₂在多种催化反应中表现出良好的活性和稳定性,包括氢气氧化反应(HOR)、析氧反应(OE…
-
如何调控电子结构、态密度、能带结构、掺杂与缺陷?
本文将从Bi₂WO₆的电子结构、态密度、能带结构、掺杂与缺陷调控、光催化性能等方面进行详细分析,并结合相关文献进行说明。 Bi₂WO₆(钨酸铋)是一种具有广泛应用前景的多功能材料,…
-
什么是缺陷?
晶体缺陷是指晶体内部原子排列的局部不规则现象,这类缺陷会显著影响材料的物理化学性质,尤其是在催化领域具有重要作用。以下是具体分类及其对催化的影响: 晶体缺陷的分类 点缺…
-
氮化铝(AlN)半导体性质
氮化铝(Aluminum Nitride,简称AlN)是一种典型的宽禁带半导体材料,因其优异的物理和化学性能,在光电子器件、功率器件、深紫外探测器等领域具有广泛的应用前景。 本文将…
-
什么是掺杂?不同掺杂形式的作用机制与优化策略!
在理论计算领域,元素掺杂作为调控材料性能的重要手段,其形式多样,根据掺杂位置的不同,主要可分为替位掺杂、间隙掺杂、表面吸附掺杂、空位辅助掺杂和复合掺杂等类型。 深入研究这些不同的掺…