计算化学与分子模拟
-
么是杂化泛函?DFT中结合HF精确交换提升电子结构/材料性质计算精度的关键方法
杂化泛函是密度泛函理论(DFT)中的一种重要方法,它通过结合局域密度近似(LDA)和广义梯度近似(GGA)等半局域泛函与Hartree-Fock(HF)方法中的非局域交换能,从而提…
-
什么是径向分布函数(RDF)?定义、傅里叶变换计算与材料结构分析
径向分布函数(Radial Distribution Function, RDF)是描述粒子或电子在空间中分布情况的重要物理量,广泛应用于原子物理、材料科学、化学、生物物理等领域。…
-
声子与晶格振动:固体物理基础及其对材料热导率/热电性质的影响机制
声子与晶格振动是固体物理学中的核心概念之一,它们不仅揭示了材料内部原子的动态行为,还深刻影响了材料的热、电、光学等宏观性质。以下将从声子的定义、晶格振动的理论基础、声子的类型及其在…
-
声子谱(Phonon Spectrum)详解:定义、计算方法(VASP等)及其在材料性质研究中的应用
声子谱(phonon spectrum)是描述固体中晶格振动模式的物理量,它通过声子的频率与波矢之间的关系来反映材料的结构稳定性、热力学性质以及动力学行为。 声子谱的研究在材料科学…
-
什么是福井函数?DFT预测亲核/亲电活性位点、药物设计、催化与环境降解应用
福井函数(Fukui Function)是化学反应性理论中的一个重要概念,它由日本化学家福井谦一(Kenichi Fukui)于1952年提出,并在1981年与莱纳斯·鲍林(Lin…
-
大体系材料的两种模拟方法
随着材料科学与生物科学的快速发展,越来越多的研究对象呈现出体系大、组分复杂、结构演化快等特点,传统实验手段在解析微观机制和动态过程时往往面临空间与时间分辨率的双重瓶颈。 分子动…
-
为什么声子谱很重要?
声子谱是材料科学、凝聚态物理和化学等领域中一个非常重要的研究工具。它不仅揭示了材料的微观振动特性,还对材料的热力学性质、电子结构、光学性质以及催化性能等具有深远影响。深入理解声子谱…
-
一种介于DFT和MD之间的模拟方法:xTB
总结:在理论与计算化学、材料科学日益交叉融合的今天,高效且多尺度的模拟工具对于探索新材料、理解复杂反应机理至关重要。 本文围绕三类主流计算方法——密度泛函理论(DFT)、分子动力学…
-
什么是密度泛函理论?
说明:密度泛函理论(Density Functional Theory, DFT)是一种量子力学计算方法,用于求解多电子体系的基态性质。其核心思想是利用电子密度而非复杂的多电子波函…
-
什么是百亿级别的分子动力学模拟?
百亿原子级分子动力学模拟不仅是理解物质世界本质的“显微镜”,更是驱动技术创新的 “计算器”。它通过突破尺度限制,将原子世界的规律与人类现实需求直接连接,从新材料、新药研发到应对全球…
-
高斯软件有什么用?
高斯软件(Gaussian)是一款在量子化学计算领域中具有广泛影响力的科学计算软件。它由美国卡内基梅隆大学的约翰·波普(John Pople)等人于1970年开发,自推出以来,高斯…
-
DFT如何处理强关联体体系
密度泛函理论(Density Functional Theory, DFT)是一种基于量子力学的计算方法,用于研究多电子体系的电子结构和性质。它通过将复杂的多体问题转化为处理独立粒…
-
LDA+U方法的理论框架与Hubbard模型嵌入机制
LDA+U方法是一种在密度泛函理论(DFT)框架下,用于描述强电子关联材料的修正方法。该方法通过引入Hubbard模型中的自旋–自旋相互作用,修正了LDA(局域密度近似…
-
什么是非平衡分子动力学模拟?
非平衡分子动力学模拟是一种研究系统在外界扰动下行为的计算方法,与传统的平衡态分子动力学不同,它通过施加外场(如温度梯度、电场、剪切力等)打破系统的热力学平衡,从而模拟实际非平衡过程…
-
如何正确设置真空层?
本文详细介绍了密度泛函理论(DFT)计算中真空层的作用及其设置方法。真空层通过消除周期性边界条件带来的镜像相互作用,确保表面和分子体系的计算结果准确可靠。文章分析了真空层厚度对计算…
-
解耦与协同:理解催化中热力学平衡与动力学速率的钥匙
说明:催化研究中,热力学以ΔG和K衡量反应可能性与平衡,动力学用活化能和Arrhenius公式表征反应速率,催化剂不改变热力学平衡却能降低活化能加速反应。 二者在研究维度等方面存在…
-
均方位移(MSD) 如何定量解析粒子运动模式?
MSD(Mean Square Displacement,均方位移)是描述粒子运动的一项重要物理量。它衡量了粒子在单位时间内的平均位移的平方,通常用于研究粒子的扩散行为、物质的热运…
-
分子力场的发展与革新:传统势能函数、第二代改进及机器学习前沿
本文全面探讨了分子力场这一计算化学的核心工具如何描述原子间相互作用并推动分子模拟。 从力场的基本概念、功能形式和参数化挑战入手,详细介绍了传统加和性力场(如AMBER、CHARMM…
-
分子动力学怎么加磁场?
研究磁场下的分子动力学模拟,主要是为了深入理解外磁场对材料和分子体系微观结构与动力学行为的影响。磁场能够调控自旋状态、电子分布和分子排列,从而改变物理、化学性质和功能表现。 在能源…
-
什么是广义梯度近似(GGA)泛函?
广义梯度近似(Generalized Gradient Approximation,GGA)泛函是密度泛函理论(Density Functional Theory,DFT)中用于改…