密度泛函理论DFT
-
什么是吸附能?从表面科学到能源转化器件的深度剖析
说明:本文华算科技系统介绍了吸附能的基本概念、分类及其在表面科学与催化研究中的核心作用,重点阐述了物理吸附与化学吸附的机制差异、能量特征及其对材料表面反应过程的关键影响。 通过结合…
-
LDA+U方法的理论框架与Hubbard模型嵌入机制
LDA+U方法是一种在密度泛函理论(DFT)框架下,用于描述强电子关联材料的修正方法。该方法通过引入Hubbard模型中的自旋–自旋相互作用,修正了LDA(局域密度近似…
-
拆解VASP:不用公式,也能看懂这款“材料设计神器”!
材料科学领域有一款“瑞士军刀”级别的软件——VASP(Vienna Ab-initio Simulation Package),它能从原子层面预测材料的性能,甚至设计出自然界不存在…
-
增加3个数量级!复旦大学褚维斌,新发JACS!
分子/金属氧化物界面的光催化效率在很大程度上取决于光生载流子向前转移到分子和向反向转移到基质之间的动态竞争。 2025年6月7日,复旦大学褚维斌在国际知名期刊Journal of …
-
DFT如何计算超导?
说明:密度泛函理论(DFT)是研究材料电子结构的强大工具,在研究超导材料时也具有重要作用。虽然传统的DFT本身无法直接描述超导现象(因为它是一个描述基态性质的理论,不包含电子-电子…
-
如何计算PMS催化机制?
过一硫酸氢盐(PMS)的理论计算通过密度泛函理论(DFT)揭示其分子结构(如O-O键弱化特性)与吸附机制(如双金属位点强吸附),结合过渡态搜索量化活化能垒(如CuFe₂O₄界面能垒…
-
密度泛函理论在催化剂筛选和设计中的应用
本文系统介绍了密度泛函理论(DFT)在催化剂筛选与设计中的关键作用。 首先阐述了DFT计算吸附能、反应自由能及活化能等指标如何揭示反应热力学与动力学特征。接着基于描述符分析与火山图…
-
基于 DFT 的 Fe₃O₄电子结构、缺陷 / 界面效应计算及 Fe₃O₄@MoS₂异质结构催化活性优化
四氧化三铁(Fe₃O₄)的催化计算研究通过密度泛函理论(DFT)解析其电子结构(如半金属性、铁磁性)、缺陷/界面效应及催化机理(如NEB法计算反应能垒)。 复合材料设计中,异质结构…
-
非均相催化!他,42岁发校史首篇Science,「国家杰青/长江特聘」,现任985院长,新发Angew!
成果简介 探索一种高效的CO2和聚对苯二甲酸乙二醇酯(PET)串联升级回收的催化体系,是实现废物资源高效利用的迫切需要。然而,C=O键的高活化能(在PET和CO2中)和难以调节的反…
-
如何描述福井函数的反应选择性?
福井函数最初由Parr等人于1984年提出,用于描述分子的反应性位点。它通过分析电子密度对电子数的响应,揭示了分子在不同反应条件下的活性区域。例如,当电子被添加到分子时,电子密度的…
-
电催化理论计算与实验中溶剂效应差距
催化反应的密度泛函理论(DFT)计算常将液相中的水分子或气相中的背景气体忽略,以真空或隐式介质模型取代真实环境。 本文首先分析了这种简化的动因:显式模拟大量环境分子会大幅增加计算量…
-
锂电池能做什么样的理论计算?
密度泛函理论(DFT)通过分析锂电池材料的电子行为、锂扩散路径及界面反应机制,精准预测结构稳定性、电压曲线与导电性优化策略。 结合跨尺度模拟与机器学习加速,DFT正推动高稳定性、高…
-
分子力学(MD)与密度泛函理论(DFT)的核心区别与应用
分子动力学模拟(MD)和密度泛函理论(DFT)是计算化学领域常用的两种重要工具,广泛应用于物质的结构、性质以及反应机制的研究。 尽管它们在模拟对象上有很多交集,但它们在原理和应用上…
-
范德华校正有什么用?
本文系统介绍了在密度泛函理论(DFT)中引入范德华校正的重要性与具体方法。 首先阐明了范德华力的物理本质及其在分子晶体、吸附体系和层状材料中的关键作用,并指出常规DFT方法(如GG…
-
弱键催化!浙江工业大学,最新Angew!|氢键驱动的α-C(sp3)-H选择性激活:一种直接的双催化策略用于高效无受体脱氢反应
将醇转化为相应的羰基衍生物对于构建复杂分子至关重要。目前,催化醇的无受体脱氢策略主要限于活性醇,如苄醇或烯丙醇,这是因为传统非活性醇的α-C(sp3)-H键解离能相对较高。 弱键催…
-
北京化工大学邵明飞/栗振华,新发Angew!
研究概述 通过光电催化(PEC)策略选择性氧化C(sp3)-H键是合成有价值的含氧化合物的一种前景广阔的方法,但由于烃类分子的稳定性,这一过程的效率有待进一步提高。 2025年5月…
-
判断电子转移的常见方法与实用技巧
本文基于DFT框架,系统介绍了判定电子转移方向的三大主流方法: 差分电荷密度图可直观识别复合体系中电子富集与耗散区域,用于定性判断并可与Bader电荷分析配合定量验证; 功函数分析…
-
光催化可以进行哪些理论计算?
本文从理论计算角度分析了光催化剂的关键性能,涵盖电子结构、光学特性、载流子输运、表面反应及稳定性等方面。 通过密度泛函理论(DFT)解析能带结构、缺陷效应及掺杂调控,探讨光吸收性能…
-
为什么热催化要算过渡态,光催化电催化却不用呢?
催化反应路径的建模与决速步(Rate-Determining Step, RDS)识别是理论催化研究的核心内容之一。本文系统梳理了密度泛函理论(DFT)在热催化、电催化与光催化三类…
-
DFT计算|吸附能
本文主要探讨了吸附能的概念、重要性及应用。吸附能是衡量分子与固体表面相互作用强度的关键指标,其大小受表面材料和分子特性影响。在催化、气体传感、材料设计与环保等领域有重要作用。 在自…