DFT计算
-
分子描述符的基础定义及量子化学应用
分子描述符是将复杂的化学信息转化为可量化数据的数值表示,从而实现分子性质的数学处理。它们在化学、药物科学和材料设计等领域发挥着基础性作用。量子化学描述符是分子描述符的一个重要类…
-
隐式溶剂化模型在纳米材料表面能与催化反应中的DFT应用
总结:本文全面剖析了DFT计算中隐式溶剂化模型的原理、基本假设及其在化学与材料科学中的应用。隐式溶剂化模型将溶剂视为连续介质,通过介电常数和平均场近似简化计算,显著降低了计算成本,…
-
分子轨道:定义、理论基础与计算可视化
分子轨道和原子轨道是描述电子在原子或分子中分布的数学模型,它们有不同的特性。随着理论计算化学及其应用软件的快速发展以及高性能计算机的普及,利用计算工具获取分子的轨道能级、形状和电子…
-
DFT计算中加电场的意义何在?
总结:本文系统介绍了DFT计算中电场的作用原理及其在材料研究中的应用。 电场通过改变电子分布和能带结构,可显著调控材料的电学、光学等性质。文章详细讲解了VASP和Materials…
-
电负性:基础概念、理论计算进阶及其在现代化学/材料科学中的作用
说明:电负性量化原子吸引成键电子能力,通过Pauling、Mulliken等经验模型及DFT量子力学方法计算。 其周期性呈同周期递增、同族递减规律,相对论效应可使超重元素电负性…
-
NRR常见DFT计算结果分析
在电化学氮还原反应(NRR)中,密度泛函理论(DFT)计算是研究催化剂性能、反应机制和选择性的重要工具。通过DFT计算,研究者能够系统地分析不同催化剂的电子结构、吸附能、反应路径和…
-
什么是费米能级?
催化剂的性能本质上由其电子结构决定。在众多描述电子结构的参数中,费米能级(Fermi Level)扮演着核心角色,它不仅是一个能量基准,更是连接材料宏观热力学与微观催化反应的桥梁。…
-
什么是百亿级别的分子动力学模拟?
百亿原子级分子动力学模拟不仅是理解物质世界本质的“显微镜”,更是驱动技术创新的 “计算器”。它通过突破尺度限制,将原子世界的规律与人类现实需求直接连接,从新材料、新药研发到应对全球…
-
DFT计算,真的能“加”磁场吗?
密度泛函理论(DFT)作为计算材料物性的核心工具,其强大能力已得到广泛印证。然而,当研究者试图模拟外磁场对材料的影响时——例如研究磁化行为、塞曼效应或磁各向异性——传统DFT计算往…
-
分子静电势(ESP):理论计算、可视化解读与化学反应活性预测
静电势(Electrostatic Potential, ESP)是描述分子或原子周围电场分布的物理量,它反映了分子中各区域电荷分布的特征。 静电势的计算基于分子中电荷(原子核和电…