交叉学科
-
什么是铁电催化?铁电材料在催化领域的应用
总结:铁电材料因其独特的自发极化和极化可逆特性,正在催化领域掀起一场全新变革。极化调控为表面电荷、电子结构和活性位提供了精准“操控手”,不仅提升了CO2还原、氮气还原等关键反应…
-
什么是活性位点?分子识别与过渡态稳定化机制及其在医药研发/工业催化中的应用
活性位点(Active Site)是生物化学、催化化学和材料科学中的一个核心概念,尤其在酶和催化剂的研究中具有重要意义。它是指在大分子(如蛋白质、酶或催化剂)中,能够与特定底物结合…
-
怎样调控氧空位?CeO₂/TiO₂掺杂技术、气氛/温度调控策略与CO₂RR催化应用
调控氧空位是材料科学和催化化学中的一个重要研究方向,尤其在氧化铈(CeO₂)、过渡金属氧化物、半导体材料等领域具有广泛的应用前景。 氧空位的调控不仅能够显著改变材料的物理化学性质,…
-
如何分析自由能、吸附能?DFT计算步骤、自由能台阶图构建与ORR催化分析实战
在材料科学、催化反应、电化学和表面化学等领域,自由能和吸附能是描述物质相互作用、能量变化和反应路径的重要物理量。 它们不仅决定了材料的稳定性、催化活性和反应速率,还为催化剂设计、材…
-
限域效应如何优化催化性能?
说明:本文概述了限域效应在催化中的核心作用机制:通过纳米空间限域重构活性位点微环境,实现电子结构扰动、电荷转移加速、活性位稳定化、溶剂性质调变及传质路径优化。掌握这些原理,可精准设…
-
电催化为什么要做DFT计算?
说明:DFT计算是电催化研究的核心工具,可解析反应机制、建立活性描述符、指导催化剂设计。其关键内容包括吸附能计算、过渡态搜索、电子结构分析等,通过顶刊案例验证了对OER、ORR…
-
催化活性位点:定义、表征与理性设计
说明:催化是现代化学工业的核心,而催化剂性能的关键则在于其“活性位点”(Active Site)。从宏观上看,活性位点是催化剂表面或内部那些能够与反应物分子发生特定相互作用,显著降…
-
氢电极的三种形态:NHE、SHE、RHE的详细对比
说明:本文清晰区分了NHE、SHE和RHE概念,并详细介绍了常用参比电极(如SCE、Ag/AgCl、Hg/Hg2SO4)的结构、特性、优缺点及适用条件,以及非水体系中准参比电极(Q…
-
电催化中的空位工程:阴离子空位与阳离子空位的特性与应用
说明:本文华算科技探讨了电催化中的空位工程,系统阐述了阴离子空位(如氧空位、硫空位、硒空位和磷空位)和阳离子空位的形成机制、特性及其在HER、OER和CO2RR等电催化反应中的应用…
-
电催化理论计算:从吉布斯自由能变到多尺度融合的探索
说明:电催化理论计算通过量子化学与统计力学方法,揭示电子结构与反应动力学的关联。核心概念包括吉布斯自由能变、d带中心理论、火山图等,指导催化剂设计。 计算方法涵盖DFT、MD、机器…