掺杂
-
【VASP教程】新手建模必学!VESTA扩胞教程!| 华算科技 朱老师讲VASP
本视频由华算科技–朱老师讲VASP团队制作,主要内容包括:使用VESTA构建石墨烯超胞模型的方法,通过调整晶格常数,便于后续吸附或掺杂计算,提升浓度可控性和结构稳定性,并指导保存与…
-
一文说清“氮掺杂石墨烯”:机理、性能与应用
说明:本文华算科技介绍了氮掺杂石墨烯的掺杂机理、键合构型及其对电子结构和电化学性能的调控作用,如何通过精准掺杂设计能带隙和活性位点,从而高效开发高性能电催化剂、超级电容器和电池电极…
-
电催化剂原位重构:定义、机制与优化策略全解析
说明:本文华算科技介绍了电催化剂原位重构的定义、影响因素(反应时间、过电位等)及价态控制、活性物种保留、晶相演化工程、表面中毒抑制四大优化策略与具体实现方法。读者可系统学习到调控原…
-
Materials Studio教学-如何进行掺杂?实例分析 | 华算科技-MS杨站长
本视频由华算科技-MS杨站长团队制作,本期内容包括:如何在Materials Studio中进行掺杂操作,以氧化铝为例,演示铝原子替换为铁并调整组分比例至50%的方法,强调周期性镜…
-
电子自旋工程:调控方法、表征技术与电催化前景
说明:本文华算科技主要介绍了电子自旋的定义、作用、调节方法及表征方法。调节电子自旋的方法包括缺陷诱导、掺杂诱导、价态调控、晶体结构调控和强金属 – 载体相互作用等。此外…
-
界面调控:定义、策略与应用案例全解
说明:本文华算科技深入探讨了界面调控的多种策略及其在不同领域的应用。通过介绍掺杂、构筑应变、构筑异质结、引入空位等方法,文章展示了如何通过改变界面的结构和性质来优化材料的功能特性。…
-
晶体材料中的空位:形成机制、特性与性能影响
说明:本文华算科技深入探讨了晶体材料中阴离子空位和阳离子空位的形成机制、特性及其对材料性能的广泛影响。文中详细阐述了空位的电荷状态、能带调制效应、对扩散行为和晶体结构的影响,以及在…
-
原子掺杂:基于DFT的第一性原理计算与策略
说明:原子掺杂是重要的材料调控策略,通过引入杂质原子改变材料电子结构、能带和载流子浓度,从而提升其催化、电学和光学性能。 近年第一性原理计算发展迅速,DFT成为揭示掺杂机理和缺陷态…
-
费米能级 vs 价带导带:微观层面的调控与应用
在微观的电子世界里,材料的一切导电行为并非偶然,而是由价带、导带和费米能级——凝聚态物理与材料科学中最核心的概念所决定。 如何精准调控这其相对位置是实现材料性能的按需定制,成为了推…
-
氧空位调控:金属氧化物催化剂的电子、化学与催化性能优化
说明:氧空位是金属氧化物催化剂中常见而关键的结构缺陷,其形成可显著改变材料的电子、化学和催化性能。 过去研究表明,晶格中缺失一个氧原子常伴随留下两个电子,形成高活性的电子富集位…
-
晶体缺陷从入门到精通:原理、方法与储能应用实例
说明:本文华算科技系统阐述了晶体缺陷的定义、分类及其关键作用与原理,并详细介绍了多种缺陷调控策略。阅读本文,您将全面了解如何通过精准设计缺陷来显著提升材料的离子扩散能力、电子导电性…
-
电子缺陷工程:种类、调控策略、先进表征及其在催化与新能源材料性能优化中的应用
说明:本文华算科技介绍了电子缺陷的种类及其调控方法,并探讨了高分辨电子显微技术、X射线吸收谱和电子顺磁共振等表征手段。通过阅读本文,读者将了解电子缺陷工程在材料性能提升中的重要性及…
-
高熵 VS 掺杂:元素选择、位点调控(TMLOs 案例)及电化学储能材料开发的创新思路
说明:本文华算科技系统对比了传统掺杂与高熵策略在材料改性中的核心差异与协同优势。阅读本文您将掌握从“单点修饰”到“多元素熵工程”的设计范式转变,学会元素选择、位点占据与浓度调控(如…
-
什么是表面重构?定义、动态机制(结构 / 价态 / 配位改变)及对电催化活性的优化作用
说明:本文华算科技系统解析了表面重构的定义、机制、影响因素、表征方法及调控策略,阐明其如何通过动态改变材料表面结构、价态与配位环境来优化催化活性和选择性。阅读此文您将掌握利用外加电…
-
如何调控电子结构?自修饰、异质结构构建及性能关联的深度剖析
说明:本文华算科技系统介绍了电子结构调控的策略,包括自修饰(如掺杂、边缘和空位工程、官能团修饰)与多相修饰(如异质结构构建)。读者可系统学习到电子结构与性能的关联,了解如何通过原子…
-
催化剂改性:提升性能的多种策略与实例解析
总结:本文华算科技系统综述了电催化领域常用的催化剂改性方法,包括掺杂与异质原子引入、缺陷工程、表面修饰与功能化、纳米结构调控、载体优化及单原子催化剂设计等。不同策略通过调控电子…
-
基于DFT计算的掺杂调控策略:富锂锰基正极材料性能优化与电子结构分析
本文华算科技全面探讨了离子掺杂对正极材料结构稳定性和电化学性能的调控机制,为设计高性能电池材料提供了理论依据。 以富锂锰基正极为例,解析其晶体结构、电子特性及其在锂离子电池中的应用…
-
为什么要进行掺杂?晶体掺杂在半导体与催化领域的关键作用
本文系统介绍了晶体掺杂的基本概念及其在半导体和催化领域的重要意义。掺杂通过引入外来杂质原子改变基质材料的物理化学性质,从而实现对材料性能的精准调控。 在半导体中,掺杂可调节载流子浓…
-
半导体特性全解析:本征、N型与P型半导体的载流子与能带结构
本文系统介绍了半导体的基本定义与特性,包括其介于导体和绝缘体之间的导电性能以及热敏、光敏和掺杂特性。重点分析了本征半导体、N型半导体和P型半导体的载流子特性、能带结构及电导率差异。…
-
掺杂:非金属与金属掺杂原理、方法及性能优化
说明:本文介绍了掺杂在材料中的应用,涵盖非金属元素和金属元素的掺杂原理及其对材料性能的影响。详细阐述了高温煅烧、水热/溶剂热、等离子体处理和电沉积等常见掺杂方法的原理与优势。读者可…