DFT计算
-
NRR催化理论计算有哪些?
电催化氮还原反应(NRR)作为可持续合成氨的关键技术,近年来在开发高效催化剂领域备受关注。在众多催化材料中,过渡金属合金凭借独特的电子结构和协同效应成为研究热点。 NiFe合金因其…
-
云南大学EES: 调控MOF电子结构实现非活性锂激活与高效离子动力学
随着电动交通和电子设备对更高能量密度的需求不断上升,高性能固态锂金属电池的开发成为实现这一目标的关键技术之一。然而,循环过程中锂的不均匀沉积/剥离易导致非活性锂累积,严重影响电池性…
-
什么样的电催化理论计算思路更容易发顶刊?
电催化顶刊研究通过DFT计算精准调控活性位点电子结构(如d带中心、配位环境),结合多尺度模拟与实验验证(同位素标记、高通量筛选)揭示催化机制。 创新方法(晶格应变、单原子限域)破解…
-
DFT如何计算钙钛矿?
密度泛函理论(DFT)计算为钙钛矿材料的光学性质研究提供了原子尺度的理论工具。 通过分析带隙、介电函数、激子结合能等参数,揭示了钙钛矿的光吸收机制、激子行为及界面光学特性。这些计算…
-
DFT计算如何解释催化选择性?
本文系统阐述了如何通过密度泛函理论(DFT)来解释催化反应中的产物选择性问题。首先,介绍了DFT的基本原理及其在催化领域的应用,如吸附能计算、反应能垒评估和电子结构分析。 接着,文…
-
DFT计算中GGA为什么要加U?
GGA+U方法是对传统密度泛函理论(DFT)的重要扩展,通过引入Hubbard U项显式处理强关联体系中局域d/f电子的库仑排斥效应,有效解决了LDA/GGA在描述过渡金属氧化物、…
-
DFT算不准能带,那还有什么用呢?从 PBE 泛函的局限性到材料研究中的价值重构
本文阐述了使用GGA-PBE泛函进行DFT带隙计算时常出现比实验值低约40%~50%的系统性偏差,其根本原因在于常规模型缺乏“导数不连续”校正且存在自相互作用误差。 随后指出尽管绝…
-
解析活性中心的本质及DFT 计算应用与未来突破方向
活性位点是催化反应中直接参与底物结合与过渡态稳定的微观区域。通过DFT计算可解析其几何结构、电子特性及反应路径,如FeN4位点通过动态优化显著提升氧还原活性。 未来需结合动态模拟、…
-
锂硫电池DFT计算有哪些?
在锂硫电池的研究领域中,密度泛函理论(DFT)计算发挥着至关重要的作用,它为深入理解电池的反应机理、优化材料性能以及解决实际应用中的关键问题提供了有力的理论支撑。 以下将从吸附能、…
-
什么是铜酞菁配合物?
铜酞菁配合物通过取代基(卤素、羧基等)和结构设计(双金属、高分子桥联)实现功能多样化。 DFT计算揭示取代基降低LUMO能级,增强电子注入效率;氯代衍生物催化烯丙醇环氧化反应能垒降…