分子动力学模拟
-
什么是热力学计算和动力学计算?
热力学计算和动力学计算是材料科学、化学工程、能源系统等领域中不可或缺的重要工具,它们分别从能量转换和反应速率的角度出发,帮助研究人员理解和预测材料或系统的宏观行为。以下将从定义、原…
-
吸附能为什么这么重要?
吸附能是化学、材料科学和工业应用中一个极其重要的物理量,它不仅在催化反应中起着决定性作用,还在环境治理、能源转换、材料设计等多个领域具有广泛的应用价值。 吸附能的大小直接影响了反应…
-
自由能VS吸附能
自由能和吸附能是化学、物理和材料科学中两个非常重要的概念,它们在描述物质相互作用、能量变化和反应动力学方面具有核心地位。尽管两者在某些方面有相似之处,但它们的定义、物理意义、计算方…
-
什么是阴极电解质界面膜及其在锂电中的核心作用?
摘要:本文系统介绍了阴极电解质界面膜(CEI膜)的定义、形成过程及其在锂离子电池中的关键作用。CEI膜由电解液在高电位下氧化分解生成,具有复杂的有机–无机复合结构,…
-
VESTA如何构建石墨烯模型?
在材料科学与计算化学领域,VESTA 是一款广泛使用的晶体结构可视化与建模软件,尤其适用于构建二维材料如石墨烯的模型。 VESTA构建石墨烯模型的步骤 1. 导入或构建石墨烯单胞 …
-
什么是百亿级别的分子动力学模拟?
百亿原子级分子动力学模拟不仅是理解物质世界本质的“显微镜”,更是驱动技术创新的 “计算器”。它通过突破尺度限制,将原子世界的规律与人类现实需求直接连接,从新材料、新药研发到应对全球…
-
深入解析金属-载体相互作用(MSI)及电子效应、几何效应与化学键合的核心作用
说明:金属–载体相互作用(MSI)指负载型催化剂中金属与载体的物理化学作用,含电子、几何及化学键合效应。可通过密度泛函理论(DFT)、分子动力学(MD)模拟,分析态…
-
理论计算揭示矿物浮选微观机理:DFT与MD模拟在药剂作用与界面过程研究中的应用
本文从理论计算角度解析了矿物浮选的基本原理及其关键技术,重点介绍了DFT计算和分子动力学(MD)模拟在浮选研究中的应用。通过态密度(DOS)分析矿物表面电子结构,揭示了药剂与矿物作…
-
水研究何以成为全球科学核心:多维价值探析
水的理论研究之所以成为全球科学界的核心焦点,源于其独特的物理化学性质、跨学科的关键作用、极端条件下的复杂行为、前沿技术的突破性支撑以及应对全球危机的迫切需求。 这种看似简单的分子在…
-
共价有机框架(COF)的结构特征及其在气体吸附分离与催化中的应用与机理
本文详细介绍了共价有机框架(COF)的基本组成、结构类型及其在气体吸附和催化性能研究中的应用。COF通过共价键连接有机分子,形成规则的孔道结构和周期性排列,具有优异的吸附和催化性能…
-
什么是非平衡分子动力学模拟?
非平衡分子动力学模拟是一种研究系统在外界扰动下行为的计算方法,与传统的平衡态分子动力学不同,它通过施加外场(如温度梯度、电场、剪切力等)打破系统的热力学平衡,从而模拟实际非平衡过程…
-
均方位移(MSD) 如何定量解析粒子运动模式?
MSD(Mean Square Displacement,均方位移)是描述粒子运动的一项重要物理量。它衡量了粒子在单位时间内的平均位移的平方,通常用于研究粒子的扩散行为、物质的热运…
-
分子动力学怎么加磁场?
研究磁场下的分子动力学模拟,主要是为了深入理解外磁场对材料和分子体系微观结构与动力学行为的影响。磁场能够调控自旋状态、电子分布和分子排列,从而改变物理、化学性质和功能表现。 在能源…
-
99.7%!四川大学AEM:动态交联柔性水凝胶电解质助力无枝晶锌负极
水性锌离子电池(AZIBs)因其环保、安全且低成本的特点,在柔性电子和先进储能领域极具潜力。然而,传统电解质中锌枝晶生长、副反应及机械不稳定性等问题限制了其实际应用。 在此,四川大…
-
3500小时!华科/物理所Angew:聚合物电偶极效应增强准固态钠金属电池
钠金属负极的界面不稳定性严重阻碍了钠金属电池的实际应用。根据双电层(EDL)理论,亥姆霍兹层的电势差对电极/电解质界面的电化学反应至关重要,其决定了固体电解质界面相(SEI)的组成…
-
如何通过分子动力学模拟设计高性能电解液?溶剂选择、锂盐配比与添加剂优化的多尺度分析
本文围绕电解液的组成、分类及其在锂离子电池中的应用进行了深入分析,介绍了电解液的主要成分,包括溶剂、锂盐和添加剂,以及它们在电池性能中的重要作用。 同时,也探讨了分子动力学模拟作为…
-
为何选择MD?分子动力学模拟在电解液研究中的应用
基本原理与核心概念 分子动力学(MD)模拟基于牛顿运动方程,通过追踪每个原子的轨迹来揭示体系的动态行为。其核心在于ergodic定理的适用性,即体系的时间平均与系综平均等价[7]。…
-
什么是AIMD从头算分子动力学?
从头算分子动力学(Ab initio Molecular Dynamics,AIMD)是一种结合了量子力学从头算方法和分子动力学模拟的计算方法,其基本原理与计算方法如下: 基本原理…
-
如何模拟离子扩散?均方位移(MSD)理论与跨尺度应用解析!
均方位移(MSD)是分子动力学模拟中表征粒子扩散行为的关键指标。本文系统介绍了MSD的理论基础、计算方法和特征规律,重点展示了其在电池(离子迁移)、催化(质子扩散)、合金(高温变形…
-
机器学习势函数 VS 分子动力学(MD)模拟
机器学习势函数的定义与基本原理 机器学习势函数(Machine Learning Potentials, MLFFs)是一种基于机器学习技术的势能函数,用于模拟分子和材料的物理行为…