说明:本文华算科技围绕XRD分析晶格应变展开,首先阐释应变的定义及产生机制,并分类介绍弹性、塑性、残余、热及界面五种常见类型。继而基于布拉格定律说明XRD通过衍射峰位移分析应变的原理,最后详解sin²ψ法和峰移法等实用测试技术,为材料结构表征与性能调控提供方法指导。

什么是晶格应变?

晶体材料的基本结构单元是晶格,即原子按特定规律周期性排列形成的空间点阵。晶格应变是指在外力作用、内部缺陷或外界环境影响下,晶格点阵发生局部或整体的畸变,导致原子间平衡距离偏离原始状态的现象。
从定量角度看,晶格应变ε可定义为晶格参数的变化量与原始晶格参数的比值,即ε=Δd/d₀,其中d₀为无应变状态下的晶面间距,Δd为应变状态下晶面间距的变化量(Δd=d-d₀)。
当Δd>0时,晶面间距增大,为拉伸应变;当Δd时,晶面间距缩小,为压缩应变。

图1:晶格应变的量化表达。通过温度/处理条件引起的(100)晶面间距 d 的变化与衍射峰位移,可得到晶格参数相对变化并计算 ε=Δd/d₀;i 图给出不同条件下的实测应变。DOI:10.1038/s41467-020-15338-1

晶格应变为什么产生?

晶格应变的本质是晶体内部原子间作用力的失衡。在理想晶体中,原子处于能量最低的平衡位置,晶格点阵规整有序。当受到外部因素干扰时,原子会偏离平衡位置,晶格结构发生畸变,进而产生应变。
具体产生机制可分为两类:一是外力驱动型。当材料受到拉、压、剪切等机械力作用时,原子间的结合键被拉伸或压缩,晶格点阵随之发生对应畸变。

图2:外力驱动型晶格应变的空间分布示意。DOI:10.1038/s41467-024-55135-8
二是内部/环境诱导型:无需外部机械力,由材料内部缺陷、成分不均匀或外界环境变化引发。

图3:环境诱导型(热应变)形成机理示意。DOI:10.1038/s41467-020-15338-1

常见晶格应变的种类

根据产生机制、存在状态及影响范围,晶格应变可分为多种类型,其中最常见的有以下5类:
弹性应变是指外力作用下晶格发生畸变,当外力去除后,晶格能完全恢复到原始状态的应变类型,其本质是原子间结合键的弹性形变,未发生原子的永久性位移。

图4:弹性应变的实验表征。DOI:10.1038/s41467-025-59517-4
塑性应变又称永久应变,是指外力超过材料弹性极限后,晶格发生不可逆畸变,外力去除后无法恢复原始状态的应变类型。其产生的核心机制是位错的滑移、攀移或孪生等永久性塑性变形,伴随原子的长程迁移与晶格结构的永久性重构。

图5:塑性应变的微观机制示例。DOI:10.1038/s41467-020-15775-y
残余应变是指材料在加工或处理后,外力去除或环境恢复正常后,仍保留在材料内部的晶格应变,是一种内应力对应的应变状态。根据作用范围,可分为宏观残余应变和微观残余应变。

图6:残余(内部)晶格应变的衍射表征示例。DOI:10.1038/s41467-019-12265-8
热应变是指材料在温度变化时,因热膨胀或热收缩受到约束而产生的晶格应变。理想情况下,无约束材料的温度变化仅会引发自由热膨胀/收缩,不会产生应变;当热膨胀/收缩被外部约束(如基底、夹具)或内部约束(如材料各部位温度不均、成分差异)限制时,晶格无法自由变形,进而产生热应变。

图7:热应变的来源:当薄膜/器件层与基底存在热膨胀失配且变形受约束时,会在冷却过程中形成拉伸或压缩应变,并可量化为温度相关的热失配应力。DOI:10.1038/s41467-020-15338-1
界面应变是指在多相材料、异质结构的界面区域,因两相材料的晶格参数不匹配、热膨胀系数差异或结合状态不同,导致界面附近晶格发生畸变而产生的应变。界面应变通常具有局域性,仅存在于界面两侧的有限区域内,但对材料的界面结合强度、力学稳定性及功能性能影响显著。

图8:界面应变与失配容纳机制。DOI:10.1038/ncomms7327

XRD为什么能分析晶格应变?

XRD分析晶格应变的核心依据是布拉格定律与晶格应变对晶面间距的影响。通过检测衍射峰的位移、宽化等变化,可反推晶面间距的变化,进而计算出晶格应变。
当X射线照射到晶体材料上时,晶体中的原子会对X射线产生相干散射,散射波在满足特定条件时会发生干涉加强,形成衍射峰。这一条件由布拉格定律描述:
2d sinθ = nλ
其中d为晶面间距,θ为衍射角,n为衍射级次(n=1,2,3,…),λ为入射X射线的波长。
布拉格定律揭示了衍射角θ与晶面间距d的定量关系:在X射线波长λ和衍射级次n固定的情况下,d与sinθ成反比。因此,当晶格发生应变导致d变化时,衍射角θ会随之发生相应变化,这是XRD分析晶格应变的核心。

图9:布拉格衍射的几何条件示意图。DOI:10.1038/s43586-021-00074-7
由晶格应变的定义ε=Δd/d₀=(d-d₀)/d₀,结合布拉格定律,可推导应变与衍射角变化的关系。即
ε= -cotθ·Δθ
Δθ=θ-θ₀,θ₀为无应变状态下的衍射角,θ为应变状态下的衍射角
该公式明确了晶格应变与衍射峰位移的定量关系:当材料发生拉伸应变(ε>0)时,d增大,根据布拉格定律,θ减小,衍射峰向低角度方向偏移;
当发生压缩应变(ε)时,d减小,θ增大,衍射峰向高角度方向偏移。通过测量衍射峰的偏移量Δθ,结合无应变时的衍射角θ₀,即可计算出晶格应变ε。

图10:(a) 示意晶面间距 d 的变化,d 改变会通过 Bragg 条件改变峰位;(b) 给出由衍射峰展宽/峰形分析提取的 micro-strain,反映不同区域 d 的分布差异,宏观表现为峰宽化。DOI:10.1038/s41467-022-31017-9

XRD如何分析晶格应变?

根据分析对象、样品形态及测试条件的不同,XRD分析晶格应变的方法可分为多种,其中最常用的有sin²ψ法、峰移法等。
sin²ψ法是分析材料宏观残余应变的最常用、最成熟的XRD方法,其核心优势是可通过调整样品的取向(ψ角),消除晶粒取向带来的影响,准确测量不同方向的残余应变。

图11:在不同倾角ψ 下测得衍射峰位置 2θ,并将 2θ(或换算的 d)对 sin²ψ 作图线性拟合。DOI:10.1038/s41467-025-64728-w
峰移法是最直接、最简单的XRD应变分析方法,核心是通过对比应变样品与无应变标准样品的衍射峰位置偏移,计算晶格应变。该方法操作简便、测试效率高,适合快速定性判断应变类型(拉伸/压缩)及定量计算简单应变。

图12(峰移法的真实数据例子):辐照导致晶胞参数发生可测的膨胀(a,b),其本质对应衍射峰位随 d 的变化而移动;同时,衍射峰展宽可用于提取 heterogeneous microstrain,用来表征微观应变分布与晶面间距不均一性。DOI:10.1038/ncomms7133
【做计算 找华算】
🏅 华算科技提供专业的第一性原理、分子动力学、生物模拟、量子化学、机器学习、有限元仿真等代算服务。
🎯500+博士团队护航,累计助力5️⃣0️⃣0️⃣0️⃣0️⃣➕篇科研成果,计算数据已发表在Nature & Science正刊及大子刊、JACS、Angew、PNAS、AM系列等国际顶刊。 👏👏👏
