计算物理/材料学
-
差分电荷密度的应用
差分电荷密度在材料界面与异质结构研究中的应用 1. 半导体异质界面电荷调控 在半导体异质结(如 GaAs/AlGaAs、MoS₂/WSe₂)中,差分电荷密度可直观呈现界面处的电…
-
从微观电子分布到宏观材料性能了解差分电荷密度的意义
差分电荷密度的物理内涵与多维意义:从微观电子分布到宏观材料性能的桥梁 差分电荷密度的基础定义与数学表达 差分电荷密度(Differential Charge Density, DC…
-
VASP 计算差分电荷密度流程
一、基础理论与计算准备 1. 差分电荷密度的物理意义 差分电荷密度(Differential Charge Density, DCD)反映体系形成过程中的电荷重新分布 2. 计算环…
-
二维材料电子转移机制的电荷密度解耦:差分电荷(Δρ)的理论与表征
二维材料的差分电荷密度是研究其电子结构和界面相互作用的重要工具。差分电荷密度(Δρ)能够直观地展示电子在不同片段或不同结构之间的流动情况,从而揭示材料内部的电荷再分布机制。在二维材…
-
态密度与能带结构的应用
硫化铜(CuS)作为一种重要的半导体材料,其电子结构特性,包括态密度(DOS)和能带结构,对于理解其物理化学行为及其在光催化、光电转换等领域的应用至关重要。以下将从CuS的态密度、…
-
如何分析差分电荷密度
差分电荷密度(Differential Charge Density, DCD)是电子结构计算中一种非常重要的分析工具,它能够直观地反映电子在不同体系或结构之间的重新分布情况。通过…
-
VASP如何计算差分电荷
在第一性原理计算中,差分电荷密度(Charge Density Difference, CDD)是一种重要的分析工具,用于揭示成键过程中电荷的重新分布情况。通过计算差分电荷密度,可…
-
VASP如何计算态密度
VASP(Vienna Ab initio Simulation Package)是一种广泛应用于材料科学和凝聚态物理领域的第一性原理计算软件包。它基于密度泛函理论(Density…
-
二维材料态密度应用
二维材料的态密度(Density of States, DOS)是研究其电子结构的重要物理量,它描述了在给定能量范围内,电子态的密度分布情况。 通过分析DOS,可以揭示材料的能带结…
-
态密度为什么只有一半?
说明:本文阐述 DFT 中VASP计算的自旋极化效应,非磁性计算(ISPIN=1)假设自旋简并,DOS 单一;磁性计算(ISPIN=2)打破简并,DOS 分裂。 对比磁性与非磁性材…