DFT计算
-
解耦与协同:理解催化中热力学平衡与动力学速率的钥匙
说明:催化研究中,热力学以ΔG和K衡量反应可能性与平衡,动力学用活化能和Arrhenius公式表征反应速率,催化剂不改变热力学平衡却能降低活化能加速反应。 二者在研究维度等方面存在…
-
如何区分“吸附能”与“结合能”及其材料科学应用
本文详细介绍了吸附能与结合能的基本概念、计算方法及其在材料科学和化学研究中的重要性。 吸附能描述了吸附质与基底表面的相互作用强度,其计算依赖于表面模型(如DFT中的slab模型),…
-
DFT如何计算固态电池?
说明:固态电池通过轻量化(离子迁移能垒0.3 eV)、超薄化(电子带隙>4.0 eV)及长寿命设计(枝晶抑制>1 GPa),满足电动汽车、可穿戴设备与电网储能需求。 D…
-
DFT计算如何模拟固态电池核心材料?
说明:固态电池核心材料包括固态电解质(氧化物/硫化物/聚合物)、高镍三元/富锂锰基正极、硅基/锂金属负极。其中,硫化物电解质离子电导率达10⁻³~10⁻² S/cm,硅负极理论容量…
-
什么是材料的内建电场?
材料的内建电场(Built-in Electric Field)是光催化全解水(Overall Water Splitting, OWS)技术中的核心驱动力。它通过调控光生载流子的…
-
什么是自组装分子动力学模拟?
自组装分子动力学模拟是一种利用分子动力学方法研究分子在无外力作用下通过非共价相互作用(如范德华力、氢键等)自发组织成有序结构的模拟技术。它广泛应用于研究纳米材料、生物分子、聚合物等…
-
DFT如何计算超导?
说明:密度泛函理论(DFT)是研究材料电子结构的强大工具,在研究超导材料时也具有重要作用。虽然传统的DFT本身无法直接描述超导现象(因为它是一个描述基态性质的理论,不包含电子-电子…
-
DFT计算如何分析电荷转移?
在密度泛函理论(Density Functional Theory,DFT)计算中,电荷转移是研究材料电子结构和化学反应活性的核心问题之一。深入理解电荷转移过程有助于揭示材料的物理…
-
DFT如何计算正极材料?掺杂改性、迁移路径、扩散机制、稳定性分析、电压与容量预测!
本文讲解密度泛函理论(DFT)在钠离子电池层状正极材料(如O3/P2型)研究中的应用。 介绍其层状结构特征与优势(高容量、快扩散、结构稳),通过 DFT 结合 NEB 方法揭示钠离…
-
DFT计算如何考虑温度?四种间接引入热力学效应的计算应用
密度泛函理论(DFT)在理论上无法直接设置温度参数,本文对其原因进行了探讨,并介绍了当前主流的几种间接考虑温度效应的方法,包括从头算分子动力学(AIMD)、谐波频率分析、声子谱计算…