Bader电荷
-
差分电荷 VS Bader电荷:物理本质、计算方法与应用场景
在密度泛函理论(Density Functional Theory, DFT)等第一性原理计算中,电子密度是表征体系电子结构的核心物理量。通过对电子密度进行不同角度的分析,可以揭示…
-
从吸附到掺杂:如何用差分电荷密度揭示电子转移机制?
差分电荷密度(Charge Density Difference, CDD)是通过比较体系在相互作用前后电子密度分布而得到的空间函数,能够直观揭示吸附、界面形成、掺杂和缺陷诱导等过…
-
什么是化学键?共价 / 离子 / 金属 / 配位键差异梳理与电催化 “键强 — 活性” 关联核心
说明:本文华算科技从化学键的本质出发,梳理共价、离子、金属与配位键的差异,强调电催化中“键强—活性”关联。以DOS/PDOS与d带中心刻画吸附轨道重排,用COHP/COOP与ICO…
-
看见化学键:电子局域函数(ELF)可视化指南与成键分析实战
电子局域函数(Electron Localization Function, ELF)是一种基于电子对局域化程度来表征化学键性质与电子结构特征的无量纲指标,取值范围为 0–1,其中…
-
从电子结构到催化活性:解析反键轨道在HER、OER、ORR中的关键作用与调控策略
说明:本文华算科技系统阐释成键/反键轨道的形成机理及其对金属–吸附物键强的决定作用,提出以反键轨道占据度作为调控吸附强度与反应动力学的核心思路。围绕HER、OER与ORR,给出高熵…
-
量子数到轨道杂化:原子轨道理论及其在DFT计算与催化剂设计中的关键作用
说明:原子轨道理论是描述电子运动状态的核心量子力学理论,通过量子数(主、角、磁量子数)定义轨道能级、形状和取向,结合轨道杂化、波函数等概念,揭示原子成键本质。 其在电催化中指导…
-
DFT计算分析电荷转移方法有哪些?差分密度/Bader电荷/态密度详解
密度泛函理论(Density Functional Theory,DFT)是一种广泛应用于材料科学、化学和物理学领域的量子化学计算方法。它通过计算系统的电子密度来描述分子或固体的电…
-
院士团队的催化研究怎么做?
说明:为系统阐释院士团队如何运用理论计算这一强大工具在催化领域取得突破性进展,本文特精选该团队具有代表性的三篇研究工作进行深入剖析。这些工作覆盖了不同关键催化反应体系/不同类型…
-
差分电荷、Bader电荷、Mulliken电荷有什么区别?——三种电荷分析方法全解析
在化学和材料科学中,电荷分析是理解分子间相互作用、化学键性质以及材料电子结构的重要工具。 差分电荷、Bader电荷和Mulliken电荷是三种常用的电荷分析方法,它们分别从不同的角…
-
MXene能做什么计算?覆盖电子结构、催化机制与反应路径的理论探究及应用
MXene的理论计算涵盖材料本征性质、催化活性、反应路径及高通量筛选等方面。通过DFT分析电子结构、电荷分布及表面稳定性,借助吸附自由能、d带中心等揭示催化活性机制,结合自由能台阶…