DFT计算
-
单原子催化剂:金属 – 载体相互作用等关键因素对其性能的影响及能源环境应用
单原子催化剂因其独特的单分散活性位点结构,展现出近乎100%的原子利用率和优异的催化性能。本文系统阐述了单原子催化剂的基本特性,包括其高活性、高选择性的本质原因,以及与传统催化剂的…
-
深入解析化学键:类型、形成机制及在材料科学中的应用
化学键分析是化学和材料科学中一个至关重要的研究领域,它不仅帮助我们理解物质的结构和性质,还为新材料的设计和开发提供了理论基础。 化学键的类型、强度和分布决定了分子或晶体的稳定性、反…
-
电解液体系理论计算方法:分子动力学与DFT模拟在电池研究中的应用
电解液体系的理论计算是现代电池研究中的重要工具,它不仅能够揭示电解液在电池中的作用机制,还能为新型电解液的设计和优化提供理论支持。以下华算科技将从多个角度详细探讨电解液体系的理论计…
-
DFT自洽计算(SCF)核心解析:Kohn-Sham方程迭代流程与收敛原理
密度泛函理论(Density Functional Theory,DFT)是现代计算物理和材料科学中一种重要的理论方法,用于研究多电子体系的电子结构和性质。 在DFT计算中,自洽计…
-
什么是炔烃选择性加氢反应?
本文系统介绍了炔烃选择性加氢反应的基本概念及其在工业中的重要性。炔烃选择性加氢反应通过精准调控催化剂和反应条件,能够将碳碳三键(C≡C)部分或完全转化为双键(C=C)或单键(C-C…
-
催化中吸附与活化的关键指标是什么?
本文深入探讨催化领域中吸附与活化的关键指标,阐明其物理意义,并详细阐述密度泛函理论(DFT)在这些指标的预测与分析中的核心作用。催化过程的效率和选择性在很大程度上取决于反应物在…
-
华算科技多尺度量子化学计算解决方案:全链条服务与技术矩阵赋能科研创新
在当今飞速发展的科研领域,量子化学研究正扮演着愈发重要的角色。它深入探索稳定与不稳定分子的结构、性能及二者关系,剖析分子间的相互作用、碰撞与反应等关键问题,其应用范围广泛涵盖小分子…
-
光催化可以进行哪些理论计算?电子结构、光学响应与电荷输运的DFT/TD-DFT全流程解析
光催化作为一种将太阳能转化为化学能或热能的重要技术,近年来在能源和环境领域得到了广泛关注。为了深入理解光催化材料的结构-性能关系,并优化其性能,理论计算在光催化研究中扮演着至关重要…
-
导电性能怎么通过DFT计算?密度泛函理论完整电子结构与输运性质解析
导电性能的计算是材料科学和凝聚态物理中的一个重要研究方向,尤其在新型电子器件、能源材料和纳米材料等领域具有广泛的应用前景。密度泛函理论(Density Functional The…
-
基元反应:如何用DFT计算研究化学反应
简单来说,基元反应就是那些一步到位的反应,是化学反应最基本的单元。基元反应进行过程中,化学物质的分子直接参与反应,没有中间过程,反应物分子直接得到生成物。 通常是通过一次分子碰…
-
么是杂化泛函?DFT中结合HF精确交换提升电子结构/材料性质计算精度的关键方法
杂化泛函是密度泛函理论(DFT)中的一种重要方法,它通过结合局域密度近似(LDA)和广义梯度近似(GGA)等半局域泛函与Hartree-Fock(HF)方法中的非局域交换能,从而提…
-
判断电子转移都有哪些方法?DFT差分电荷/Bader分析、价态变化法与UV-Vis/拉曼光谱检测
电子转移是化学反应中非常重要的一个概念,尤其在氧化还原反应中,电子的转移决定了反应的方向和产物。判断电子转移的方法多种多样,涵盖了从微观到宏观、从理论到实验的多个层面。以下华算科技…
-
自旋密度:铁磁性、反铁磁性与亚铁磁性材料的微观基础
本文华算科技系统介绍了自旋密度的基本概念及其在凝聚态物理和材料科学中的重要性。自旋密度是描述材料中电子自旋分布的关键物理量,通过分析自旋向上和自旋向下电子的密度差异,可以揭示材料的…
-
电催化为什么要做DFT计算?
说明:DFT计算是电催化研究的核心工具,可解析反应机制、建立活性描述符、指导催化剂设计。其关键内容包括吸附能计算、过渡态搜索、电子结构分析等,通过顶刊案例验证了对OER、ORR…
-
光催化剂理论计算:TD-DFT激发态模拟、制氢/CO2还原应用与关键参数计算详解
光催化剂理论计算是理解光催化反应机理、优化催化剂性能和设计新型光催化剂的重要手段。近年来,随着计算方法的不断进步和实验技术的结合,理论计算在光催化领域的应用日益广泛。本文华算科技将…
-
什么是电子结构计算?DFT原理、薛定谔方程求解与材料科学应用详解
电子结构计算是材料科学、化学、物理等领域中一项基础且重要的研究工具,它通过理论模型和计算方法来预测和分析物质的电子分布、能带结构、态密度、电荷密度等性质。 这些计算不仅有助于理解材…
-
如何确定催化反应位点:DFT计算、原位表征与生物信息学方法
确定催化反应位点是催化化学和材料科学中的核心问题之一,它不仅关系到催化剂的活性和选择性,还直接影响到催化剂的设计与优化。以下华算科技将从多个角度详细探讨如何确定催化反应位点,包括理…
-
吸附与电荷转移:机制、影响因素与多领域应用 (DFT计算/实验研究)
吸附与电荷转移是材料科学、化学、物理和环境科学等多个领域中极为重要的基础过程。它们不仅影响物质的物理化学性质,还在催化、传感、分离、能源存储等应用中发挥着关键作用。 本文华算科技将…
-
结构优化:确保DFT计算中能量最小化与结果准确的关键
本文详细介绍了DFT计算中结构优化的基本概念和实施方法。结构优化是通过调整原子坐标使体系能量达到最小值的过程,包含原子弛豫和电子迭代两个关键环节。 文章阐述了能量和力收敛标准的设定…
-
什么是过电位?定义、DFT自由能计算与反应能垒的量化
说明:过电位是实际电极电位与热力学平衡电位的差值,量化反应能垒,值越大催化效率越低。其计算依托DFT,通过构建自由能图确定速率决定步骤(RDS)的最大自由能变(ΔG_max),…