机器学习
-
伦敦玛丽女王大学Adv. Sci.: 用于表示域独立材料发现的公式图自注意网络
机器学习(ML)在材料属性预测中的成功在很大程度上取决于如何表示材料以进行学习。目前存在两种主要的材料描述符,一种在表示中编码晶体结构,另一种仅使用化学计量信息。其中,图神经网络(…
-
IF=31.068!Nat. Rev. Phys.概述可解释机器学习在粒子物理学中的应用!
机器学习(ML)方法在粒子物理学中具有广泛应用,但没有可解释性就不能保证算法学习的结果是正确/稳健的。开发可解释的ML/AI方法是为了消除多变量分析的黑箱问题,然而物理学中可解释A…
-
圣光机大学Small Methods: 迁移学习+轮廓检测进行手绘图的逆向材料搜索
各种形态和成分的纳/微米材料在许多不同领域都有广泛的用途。然而,寻找具有所需结构、形状和尺寸的定制纳米材料仍然是一个挑战,并且通常通过在文献中进行人工筛选来实现。 在此,俄罗斯圣光…
-
延世大学Adv. Sci.: 特征辅助机器学习用于开发无铅多元极性铁电氧化物
为了为智能数字技术扩展无铅铁电体的未知材料空间,通过多组分合金化调整其成分复杂性,可以获得增强的极性特性。然而,目前仍缺乏用于这些多组分极性材料的原子设计规则,仅简单的第一性原理不…
-
南信大杨洋ES&T: 机器学习预测排放/气候变化驱动的气溶胶变化
未来气溶胶的预测和了解气溶胶变化的驱动因素对于改善大气环境和减缓气候变化具有重要意义。第六次国际耦合模式比较计划(CMIP6)提供了各种气候预测,但气溶胶输出有限。 为此,南京信息…
-
DeepMind/威尼斯大学Nature: 填补空白,使用深度神经网络破译古代文字!
古代史研究依赖于诸如金石学之类的学科,即研究铭文并将其作为古代文明思想、语言、社会和历史的证据。然而,几个世纪以来,许多铭文已经被损坏到难以辨认的程度,或是被运到远离其原始位置的地…
-
加州大学伯克利分校Nature: 机器学习基于移动手机数据实现精准扶贫
新冠大流行摧毁了许多低/中等收入国家,导致了广泛的粮食短缺和生活水平急剧下降。为应对这场危机,世界各国政府和人道主义组织已向超过15亿人分发了社会援助。其中,精准确定援助目标是一个…
-
npj Comput. Mater.: 自动DFT+机器学习模拟Ni3Al基合金的反相畴界能
反相畴界(APB)是平面缺陷,在强化镍基高温合金中起着关键作用,它们对合金成分的敏感性为合金设计提供了灵活的调整参数。 在此,美国加州大学伯克利分校Mark Asta、劳伦斯利弗莫…
-
李巨/熊瑞EnSM: 深度学习基于不确定的未来条件实现电池衰减预测
准确的衰减轨迹和未来寿命是新一代智能电池和电化学储能系统的关键信息,仅使用少数已知的历史数据来获得针对不确定应用条件的准确预测是非常具有挑战性的。 在此,北京理工大学熊瑞教授、美国…
-
南开黄兴禄AM: 基于可解释机器学习预测和设计纳米酶
大量的纳米材料被发现具有类似酶的催化活性,因此被称为纳米酶。研究表明,多种内外部因素均会影响纳米酶的催化活性。然而,目前仍缺乏必要的方法来揭示纳米酶特征和类酶活性之间的隐藏机制。 …