机器学习
-
当机器开始学习:你的行业会被怎样重新定义?
让机器学会思考:探索机器学习的无限可能 在人工智能蓬勃发展的今天,机器学习(Machine Learning)正悄然改变着人类认知世界的方式。它不仅是科技领域的革命性突破,更是一把…
-
材料人必备!Python+机器学习,零基础入门科研新风口!
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…
-
机器学习究竟能预测哪些性质?
在材料科学的前沿领域,机器学习正以强大的数据处理和预测能力,掀起一场革命性的变革。随着材料数据的海量增长,传统的材料性质预测方法面临着诸多局限,机器学习算法的出现,为这一难题提供了…
-
中科大课题组招收能源催化和机器学习相关方向博士生、博后及科研助理
课题组研究领域及方 1.基于中科大机器化学家平台的催化材料高通量筛选; 2.新型电催化材料制备及催化机理研究; 3.原位谱学表征方法监测催化反应动态过程; 4.理论计算及机器学习 …
-
机器学习这么火,怎么应用到材料/化学/电催化领域?
随着研究技术的发展,化学理论与计算化学逐渐成为化学与材料科学研究中重要的辅助工具。近年,大量计算与实验数据的产生使得数据分析变得愈加重要,各种数据后处理方法也成为研究者们需要掌握的…
-
机器学习基础培训:合金催化、单原子催化、CO2RR、MOF、d带中心、钙钛矿、STM、熔点、有机小分子、电极涂层、体积模量
近年,机器学习这个词越来越频繁的进入大家的视野。作为一个时髦的工具,机器学习似乎无所不能,下围棋?用机器学习!解蛋白?用机器学习!开发材料?用机器学习!化学这门学科长期以来主要依赖…
-
Nature子刊:可解释机器学习方法用于快速搜索光催化剂
机器学习(ML)与高通量(HT)计算耦合的方法不仅可以加速寻找期望的材料,而且还能揭开底层过程的物理原理。然而,此类研究通常无法确定所发现的关键设计原则的来源,即除了发现有前途的材…
-
剑桥大学Nature: 预测乳腺癌治疗反应的多组学机器学习预测器
乳腺癌是恶性细胞和肿瘤微环境的复杂生态系统,这些肿瘤生态系统的组成及其内部的相互作用会促进肿瘤治疗时的细胞毒性反应。然而,值得注意的是,在未治疗的肿瘤中识别预测治疗反应特征的研究大…
-
橡树岭实验室Nature子刊: 基于可逆神经网络的二维材料逆设计
根据需要轻松设计具有所选功能特性的新型材料的能力代表了材料发现的下一个前沿。然而,以计算上易于处理的方式彻底有效地采样整个设计空间仍然是一项极具挑战性的任务。 在此,美国橡树岭国家…
-
利物浦大学Angew: 机器学习用于预测MOF中客体的可及性
金属和连接体的选择共同决定了金属-有机骨架(MOF)的结构和客体可及性,但大量可能的金属-连接体组合使得合成组分的选择具有挑战性。 在此,利物浦大学Matthew J. Rosse…