吸附能
-
吸附能为什么这么重要?
吸附能是化学、材料科学和工业应用中一个极其重要的物理量,它不仅在催化反应中起着决定性作用,还在环境治理、能源转换、材料设计等多个领域具有广泛的应用价值。 吸附能的大小直接影响了反应…
-
自由能VS吸附能
自由能和吸附能是化学、物理和材料科学中两个非常重要的概念,它们在描述物质相互作用、能量变化和反应动力学方面具有核心地位。尽管两者在某些方面有相似之处,但它们的定义、物理意义、计算方…
-
LDH催化OER性质
LDH(层状双氢氧化物)作为一种具有独特结构和优异催化性能的材料,近年来在氧析出反应(OER)中表现出显著的潜力。LDH的催化性质主要与其结构特性、金属组成、表面缺陷以及电子结构密…
-
什么是SRR反应机理?—锂硫电池中硫还原的热力学、动力学及理论研究
本文深入探讨了锂硫电池中硫还原反应(SRR)的复杂机理,从S₈到Li₂S的多步转化过程涉及多种中间产物(如Li₂Sₙ),其反应路径直接影响电池的容量、循环稳定性和倍率性能。通过热力…
-
什么是吸附能?
吸附能是量化吸附物与基底结合强度的核心物理量,定义为复合体系与孤立组分的能量差。其计算以DFT为主,需选择合适泛函并考虑范德华力修正,高阶方法如RPA可提升精度。吸附能广泛应用于催…
-
什么是吸附机理?— 催化反应中分子吸附的类型、作用及 DFT 解析
催化反应的核心始于吸附机理——分子通过物理吸附(范德华力)或化学吸附(化学键重组)“锚定”在催化剂表面,直接决定反应物的富集、活化与选择性。DFT计算作为原子尺度的“虚拟显微镜…
-
什么是费米能级?
催化剂的性能本质上由其电子结构决定。在众多描述电子结构的参数中,费米能级(Fermi Level)扮演着核心角色,它不仅是一个能量基准,更是连接材料宏观热力学与微观催化反应的桥梁。…
-
如何分析相互作用?DFT、量子化学及MD模拟的核心指标与跨尺度判据详解
相互作用强度的定量分析在材料设计、催化机理研究及药物开发等领域具有关键意义,其直接影响体系的物理化学性质与功能表现。 本文系统整合密度泛函理论(DFT)、量子化学方法及分子动力学(…
-
深入解析金属-载体相互作用(MSI)及电子效应、几何效应与化学键合的核心作用
说明:金属–载体相互作用(MSI)指负载型催化剂中金属与载体的物理化学作用,含电子、几何及化学键合效应。可通过密度泛函理论(DFT)、分子动力学(MD)模拟,分析态…
-
能带如何调控催化性能?
能带理论通过揭示材料的电子结构特征,为催化剂设计与性能优化提供了量子层面的指导。在光催化体系中,能带结构(价带顶与导带底位置)直接决定氧化还原电位。电催化领域则聚焦d带中心理论…
-
如何用理论计算判断活性位点位置?
本文系统介绍了活性位点的定义及其在化学反应中的核心作用,重点探讨了通过多种理论计算方法识别和表征活性位点的策略。文章详细分析了态密度(DOS)和d带中心在揭示电子结构中的作用,吸附…
-
如何区分“吸附能”与“结合能”及其材料科学应用
本文详细介绍了吸附能与结合能的基本概念、计算方法及其在材料科学和化学研究中的重要性。 吸附能描述了吸附质与基底表面的相互作用强度,其计算依赖于表面模型(如DFT中的slab模型),…
-
DFT如何确定反应活性位点?
总结:本文系统地阐述了密度泛函理论(DFT)如何通过吸附能、反应路径能垒、电荷分布分析(差分电荷密度与Bader电荷)及电子结构指标(d带中心和态密度)确定单原子催化和电催化体系中…
-
什么是材料的表面?
说明:表面是材料外1-3层原子层,因不饱和键致结构和性质异于体相。可从几何结构和功能特性分类,DFT通过Slab模型等研究表面,如过渡金属掺杂Cu (111) 催化案例,助于理解表…
-
什么是催化火山图?
催化火山图是描述催化剂活性或选择性与吸附能(或其他描述符)之间关系的核心工具,其独特的火山形状曲线揭示了催化反应中的内在规律。 本文详细介绍了火山图的基本概念、特点(如对称性与非对…
-
什么是吸附能?
吸附能不仅是催化科学的“语言“,更是解锁高效催化剂的“密码“。其精妙平衡诠释了自然界的催化智慧—强而不缚,弱而不怠,方显催化之本。 …
-
什么是电催化描述符?
电催化描述符在理性设计高效、稳定电催化剂中的核心作用。从能量、电子结构、几何结构等传统描述符出发,详细阐述了其基本原理、计算方法及在氢析出反应(HER)、氧还原反应(ORR)、氧析…
-
过渡态理论本质及催化应用与材料设计
过渡态是化学反应中连接反应物与产物的关键构型,位于反应势能面的一阶鞍点位置,对理解反应机理、预测反应速率及催化剂设计具有核心意义。 本文系统阐述了过渡态的物理本质及其在反应路径分析…
-
DFT计算如何模拟固态电池核心材料?
说明:固态电池核心材料包括固态电解质(氧化物/硫化物/聚合物)、高镍三元/富锂锰基正极、硅基/锂金属负极。其中,硫化物电解质离子电导率达10⁻³~10⁻² S/cm,硅负极理论容量…
-
如何计算LiPSs的穿梭效应?
说明:双原子催化剂(DACs)通过物理吸附(范德华力)与化学吸附(轨道耦合、M-S键锚定)协同抑制多硫化锂(LiPSs)穿梭效应。DFT计算揭示转化路径:长链裂解(Li₂S₈→Li…