电池顶刊
-
周豪慎教授Angew:电解液加点MOF,实现固固转化锂硫全电池!
研究背景 锂硫(Li-S)电池自研究以来,研究者们就达成共识,即环八硫(cyclo-S8)正极在醚类电解液中会经历逐步溶解-沉积的过程。广泛的研究集中于从导电基体(石墨烯、碳纳米管…
-
ACS Energy Lett.: 阳离子溶剂化对水性多价离子电池聚酰亚胺负极电荷存储性能的影响
在用于水性单价和多价离子电池的有机电极中,聚酰亚胺(PI)被认为是一种很有前景的候选材料,因为它在不同的电解质溶液中都具有高容量和良好的循环性能。 目前大多数研究都集中在聚酰亚胺负…
-
牛津大学Nat. Commun.: 通过操作拉曼显微光谱表征锂离子电解质
自 1990 年代初期锂离子电池 (LIB) 的商业开发以来,它们已被用于当今社会所依赖的许多应用中。近年来,对锂金属电池 (LMB) 等“超越锂离子”技术的研究也大受欢迎,随着政…
-
崔屹JACS:电位法测量溶剂化能及其与锂电池循环性能的关系
电解液在锂离子电池中起着至关重要的作用,因为它几乎影响着电池性能的方方面面。然而,人们对电解液的认识,尤其是对Li+的溶剂化作用的认识还远远滞后于它的意义。斯坦福大学崔屹等人介绍了…
-
Nano Energy:单溶剂电解液实现高压锂离子电池长期稳定循环
锂离子电池的常规电解液由六氟磷酸锂(LiPF6)、碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)等有机碳酸酯组成,由于其低氧化稳定性,只能提供4.2 V的上限工作电压,因此,严重阻碍了高…
-
Nano Energy:通过丙烯腈电聚合调节锂金属电池中锂沉积
众所周知,在液态电解液中的锂沉积总是伴随着阴离子和溶剂的化学和电化学分解。分解产物瞬间钝化锂表面,形成具有显著体积膨胀的多孔结构(即苔藓状锂)。这些连续的寄生反应还导致锂金属负极的…
-
ACS Energy Lett.:无机涂层能否用作水系超浓电解液的稳定SEI?
为水系锂离子电池开发稳定的共形固体电解质界面(SEI)一直是人们期待已久的梦想,以支持无毒环保储能技术的发展。为实现这一目标,最近引入了水系超浓电解液,因为其独特的溶剂化结构允许在…
-
Angew:用于高稳定性锂负极的酞菁钴衍生分子隔离层
锂沉积过程中阴离子的不均匀消耗引发空间电荷效应,产生锂树枝晶,严重阻碍了锂金属电池的实际应用。 加拿大国家科学研究所Shuhui Sun等人报道了一种具有平面分子结构的酞菁钴电解液…
-
北理&中大Nano Energy:全固态钠金属电池Na/Na3Zr2Si2PO12界面的均匀Na+迁移动力学
金属钠/固态电解质(尤其是氧化物基电解质)界面的不稳定性和高电阻仍然是全固态钠电池面临的挑战。 北京理工大学Chengzhi Wang、中山大学Yejing Dai等人提出了一种晶…
-
ACS Energy Lett.:用于非腐蚀性电解液中镁金属负极的铋基保护层
与锂电池相比,可充镁(Mg)金属电池在容量和自然丰度方面具有潜在优势(相当于低成本和可持续性)。然而,在众多传统的镁电解液中,镁金属负极存在表面钝化行为,这导致不可逆的镁沉积/剥离…