交叉学科
-
什么是量子点?纳米级半导体的量子限域奥秘
量子点是一类既非分子也非块状的新型材料。它们具有与大块材料相同的结构和原子成分,但其特性却可以通过单一参数(粒子的大小)来调整,通常在1-20nm范围调节,目前研究比较热门的量子点…
-
如何做出Nature/Science级研究?从六大顶刊案例看高效稳定钙铁矿太阳能的突破方向
钙钛矿是一类具有 ABX₃晶体结构的半导体材料,其中 A 为有机或无机阳离子(如甲脒、铯),B 为金属阳离子(如铅、锡),X 为卤素阴离子(如碘、溴)。其带隙可通过组分调控(1.2…
-
什么样的电催化理论计算思路更容易发顶刊?
电催化顶刊研究通过DFT计算精准调控活性位点电子结构(如d带中心、配位环境),结合多尺度模拟与实验验证(同位素标记、高通量筛选)揭示催化机制。 创新方法(晶格应变、单原子限域)破解…
-
钙钛矿能做什么理论计算?
本文基于DFT 的钙钛矿理论计算,涵盖结构优化、电子性质、缺陷分析、异质结构等类型及应用,还提及高通量筛选与机器学习结合,展现其在材料研究中的关键作用。 钙钛矿材料因其独特的电子结…
-
如何计算离子迁移扩散?
离子迁移扩散计算通过DFT、分子动力学等方法揭示材料中离子输运的微观机制(如能垒、协同迁移),指导固态电解质和电池电极设计。 多尺度模拟(静态能垒分析、动态轨迹捕捉)与机器学习结合…
-
催化剂的活性位点:结构征、催化性能与类型化作用机制
催化剂的活性位点是催化反应中直接与反应物发生作用的部位,这些部位能够降低反应的激活能,从而加速反应速率。 催化剂的活性位点通常具备特殊的化学性质和电子结构,能够与反应物分子发生强烈…
-
MoS₂的硫空位工程、晶相调控、边缘设计
MoS₂纳米带通过硫空位工程、晶相调控及边缘设计优化氮还原(NRR)活性与选择性,DFT计算揭示其电子结构与反应路径的调控机制。 未来结合多尺度模拟与协同效应设计,可进一步降低能垒…
-
光致发光现象的三维解析荧光、磷光与蓝光的电子跃迁机制及光谱特性
荧光、蓝光与磷光,这些看似熟悉的词汇,背后却蕴含着复杂而精妙的科学原理。它们均属于光与物质相互作用的现象,但在发光机制、时间特性、能量状态及应用场景上存在显著差异。深入探究它们的核…
-
如何分析氢键?
氢键强度与电负性正相关,主要因高电负性原子(如O、N、F)增强H的正电性(δ+),并与受体原子(B)的孤对电子或负电区域(δ–)形成更强静电吸引。此外,小原子半径和高电…
-
解析活性中心的本质及DFT 计算应用与未来突破方向
活性位点是催化反应中直接参与底物结合与过渡态稳定的微观区域。通过DFT计算可解析其几何结构、电子特性及反应路径,如FeN4位点通过动态优化显著提升氧还原活性。 未来需结合动态模拟、…