交叉学科
-
LiF(氟化锂)光学性质
LiF(氟化锂)是一种重要的光学材料,广泛应用于辐射探测器、激光器、X射线成像等领域。其光学性质,包括折射率、介电函数、吸收系数等,对材料的性能和应用具有重要意义。 以下将从LiF…
-
什么是电催化描述符?
电催化描述符在理性设计高效、稳定电催化剂中的核心作用。从能量、电子结构、几何结构等传统描述符出发,详细阐述了其基本原理、计算方法及在氢析出反应(HER)、氧还原反应(ORR)、氧析…
-
铜(Cu)催化二氧化碳还原反应(CO₂RR)
铜(Cu)催化二氧化碳(CO₂)还原反应(CO₂RR)是当前能源与环境科学中的一个研究热点。该反应不仅能够将CO₂转化为高附加值的碳氢化合物(如C₂+产物),还能有效减少温室气体排…
-
如何解读穆斯堡尔谱技术?
说明:穆斯堡尔谱技术基于原子核γ射线的无反冲共振吸收效应(穆斯堡尔效应),可精准分析固体物质的微观性质,是重要的表征固体物质的光谱技术。其核心参量包括同质异能位移、四极分裂和核塞曼…
-
如何分析分子静电势ESP?
本文讲解了静电势(ESP)分析及其在化学及相关领域的广泛应用。ESP作为描述分子或材料表面电荷分布的关键物理量,能够直观地展示分子和材料中电荷的空间分布特征。 通过颜色图像(红色代…
-
如何分析静电势(ESP)?
静电势图是反映材料内部电荷分布和电势变化的重要图像工具,通常通过第一性原理计算获得。 它展示了由于离子核和电子分布共同产生的电场作用下,不同区域的电势能高低,从而揭示电子可能的迁移…
-
如何分析CO₂RR的反应路径?
二氧化碳(CO₂)还原反应(CO₂RR)是一种将大气中的CO₂转化为高附加值化学品和燃料的重要技术,广泛应用于碳中和与可持续能源领域。 CO₂RR的反应路径和机理复杂,涉及多种中间…
-
如何计算LiPSs的穿梭效应?
说明:双原子催化剂(DACs)通过物理吸附(范德华力)与化学吸附(轨道耦合、M-S键锚定)协同抑制多硫化锂(LiPSs)穿梭效应。DFT计算揭示转化路径:长链裂解(Li₂S₈→Li…
-
计算揭示钙钛矿钝化本质:DFT解析界面缺陷相互作用与能垒调控
本文聚焦钙钛矿材料,阐述其因优异光电性能在多领域的应用潜力,也指出表面界面缺陷导致的效率与稳定性问题。介绍了钝化的定义、分类及常见钝化剂类型,重点从密度泛函理论等方法分析钝化机制,…
-
什么是界面能?DFT揭示异质结构中的关键相互作用与性能调控机制
本文聚焦密度泛函理论(DFT)在异质结构界面能研究中的应用。 首先阐释界面能的物理内涵与DFT计算公式,揭示其与化学键合、电荷重排的关联;进而通过案例说明DFT在预测界面稳定性(如…
-
什么是钙钛矿能带工程?
钙钛矿材料的能带结构是其光电性能的核心决定因素之一,其研究对于理解材料的物理特性、优化其应用性能以及开发新型钙钛矿器件具有重要意义。 以下将从钙钛矿的能带结构定义、影响因素、能带工…
-
活性氧和自由基有什么关系?
在催化反应中,活性氧(Reactive Oxygen Species, ROS)和自由基扮演着重要的角色,二者之间存在密切的关系。活性氧是指具有高反应性的氧分子或氧化合物,包括…
-
晶格氧的作用是什么?
晶格氧在氧析出反应(Oxygen Evolution Reaction, OER)中扮演着至关重要的角色。在OER过程中,晶格氧作为催化剂表面的氧源,能够通过氧化还原反应参与氧气的…
-
如何解析LDH与羟基氧化物?
层状双氢氧化物(LDH)由二维层板与可调控层间阴离子构成,通过金属组合(如NiFe-LDH)及缺陷工程优化催化活性;羟基氧化物(如α-FeOOH)因晶型差异(层状/隧道结构)展现独…
-
电子密度计算具体指什么?
电子密度理论通过密度泛函理论(DFT)解析材料的微观电子行为,包括自旋密度(揭示磁性)、电荷密度差(界面电荷转移)、原子电荷(量化电负性)及电子局域化函数(ELF,区分键合类型)。…
-
如何从计算角度分析钙钛矿?
钙钛矿材料因其ABX₃结构的多样性和可调性,在光电、储能和量子器件等领域展现出巨大潜力。 本文从理论计算视角系统分析了钙钛矿的结构分类,包括氧化物/卤化物化学组成、立方/低维晶体结…
-
基于 DFT 的 Fe₃O₄电子结构、缺陷 / 界面效应计算及 Fe₃O₄@MoS₂异质结构催化活性优化
四氧化三铁(Fe₃O₄)的催化计算研究通过密度泛函理论(DFT)解析其电子结构(如半金属性、铁磁性)、缺陷/界面效应及催化机理(如NEB法计算反应能垒)。 复合材料设计中,异质结构…
-
什么是动态活性位点?
活性位点是指催化剂表面上能够加速特定化学反应动力学—具有高催化活性的特定位置。传统上,许多研究将具有固定电子和几何结构的活性位点视为在电催化过程中静态且不相互作用的模型…
-
如何通过分子动力学模拟设计高性能电解液?溶剂选择、锂盐配比与添加剂优化的多尺度分析
本文围绕电解液的组成、分类及其在锂离子电池中的应用进行了深入分析,介绍了电解液的主要成分,包括溶剂、锂盐和添加剂,以及它们在电池性能中的重要作用。 同时,也探讨了分子动力学模拟作为…
-
应力与界面:如何影响活性位点?
应力与应变通过改变催化剂表面原子的几何构型和电子结构,有效调控吸附热力学与反应动力学。DFT 计算揭示了不同类型应变对应物结合能和态密度的定量影响,为实验设计提供了指导。 实例表明…