电解液
-
浅析OER测试方法与原理
Q1:碱性OER测试中如何制备工作电极? A: 催化剂墨水配制 取6-10 mg催化剂粉末 加入1 mL水/异丙醇混合溶液(体积比通常3:1,增强分散性) 添加10 μL 5% N…
-
做锂电池如何去选择电解液?
核心选择依据:首先要明确你的电池应用最关键的需求是什么?是工作电压?是能量密度?功率密度?安全性?工作温度?成本?,本篇内容主要从以上几个方面来讲述! 电池的工作电压: 依…
-
电解液的组成与功能解析
一、电解液的组成 1.电解液组成介绍 电解液是锂离子电池中传输离子的关键介质,主要由以下三部分组成: 溶剂:作为电解液的基础介质,提供稳定的化学环境,允许锂离子在电池内部自由移…
-
简述锌电池负极和电解液以及数据解读
锌电池负极研究 锌离子电池负极: 构建人工界面层,通过空间屏蔽和引导离子均匀扩散实现Zn²+的均匀沉积。空间屏蔽直接使用人工界面层阻止枝晶生长,引导Zn²+均匀扩散是通过静…
-
锂离子电池负极材料简介
电池组成介绍: 一:负极材料 已经商业化研究的锂离子电池负极材料有:石墨类、氧化钛(Li₄Ti₅O₁₂)、硅碳、氧化锡(SnO₂)、碳基复合材料等。 负极材料性能特征: 1.高导电…
-
工业CT在锂离子电池失效分析检测中的应用
工业CT扫描技术在不破坏电池的情况下,真实再现内部结构,在新能源领域如锂离子电池、燃料电池、固态电池的质量控制,失效分析,新品研发中,已经成为不可替代的测试手段。 工业CT以二维断…
-
揭秘电解液中的MD模拟!
说明:本文华算科技通俗介绍了电解液中分子动力学(MD)模拟的目的、基本原理与常用策略,说明了经典MD、AIMD与增强采样在研究溶剂化、离子传输与界面行为中的不同作用,并提出了建模与…
-
电解液的定义、分类及理论计算方法在锂离子电池中的应用
说明:随着全球对高效、安全储能技术(尤其是锂离子电池)的需求日益增长,作为电池“血液”的电解液,其性能优化与设计已成为研究的核心。 本文华算科技将系统梳理电解液的定义,并深入探讨密…
-
均方位移(MSD)如何计算扩散系数?
本文华算科技系统介绍了均方位移(MSD)在分子动力学模拟中的核心作用及其与扩散行为的关联,读者可深入理解如何通过MSD分析粒子运动、计算扩散系数,并将其与宏观性能如电导率、渗透性等…
-
分子动力学(MD)模拟如何分析电解液?
本文华算科技介绍了分子动力学(MD)模拟在电解液研究中的关键作用与应用,读者可系统学习到如何利用MD模拟揭示离子溶剂化结构、传输机制及界面反应等微观过程,了解如何通过模拟手段理性设…
-
锂硫电池的关键材料与技术
锂硫电池(Li-S)是一种具有高理论能量密度和成本效益的新型储能设备,近年来在能源存储领域引起了广泛关注。其工作原理基于锂金属与硫的化学反应,理论上可提供高达2500 Wh/kg的…
-
重磅!华科黄云辉/袁利霞&浙大陆俊,最新Nature:微乳液电解液推动高电压锂金属电池发展
锂金属负极与高镍正极的配对被视为有望突破500 Wh kg-1能量密度门槛的组合。在逼近如此高的能量密度时,必须采用能够同时稳定负极和正极界面相的电解液,以确保安全且长周期的循环。…
-
大化所李先锋AFM:基于不饱和有机磺酸盐的电解液强化界面实现4.1V长循环Na₃V₂(PO₄)₂F₃|HC全电池
Na₃V₂(PO₄)₂F₃(NVPF₃)|硬碳(HC)全电池因其高电压窗口(2.0–4.3 V)而具有高能量密度的优势,但其稳定性受限于电解液在正负极的寄生氧化/还原反应。 在此,…
-
如何通过分子动力学模拟设计高性能电解液?溶剂选择、锂盐配比与添加剂优化的多尺度分析
本文围绕电解液的组成、分类及其在锂离子电池中的应用进行了深入分析,介绍了电解液的主要成分,包括溶剂、锂盐和添加剂,以及它们在电池性能中的重要作用。 同时,也探讨了分子动力学模拟作为…
-
为何选择MD?分子动力学模拟在电解液研究中的应用
基本原理与核心概念 分子动力学(MD)模拟基于牛顿运动方程,通过追踪每个原子的轨迹来揭示体系的动态行为。其核心在于ergodic定理的适用性,即体系的时间平均与系综平均等价[7]。…
-
突破370 mAh!哈工大黄燕,新发EES!
锌金属电池(ZMBs)作为多元化储能体系正迅速崛起为能源存储领域的重要方向。电解液改性是提升ZMBs性能的关键策略,其通过协同优化正负极行为实现电池性能突破。然而,现有电解液体系多…
-
超过2400小时!中南大学周江&海南大学邢振月,EES!
锌金属负极的枝晶生长和自发放电问题严重限制了其在大规模储能中的应用,主要原因是锌金属的体相富含缺陷,导致不均匀的成核和生长模式。 在此,中南大学周江、海南大学邢振月等人通过在电解液…
-
仅为0.15 V!重庆大学袁媛,AFM:双功能协同Mg@SnSb SEI助力高性能镁电池
尽管锂离子电池已广泛商业化,但其大规模应用面临成本、安全性和资源限制等挑战。镁电池因其丰富的资源、环境可持续性和理论上的高体积能量密度(3833 mA h cm-3)而成为有前景的…
-
提升63.2%!中国石油大学(北京)李永峰/马新龙团队,最新ACS Nano!
通讯作者:李永峰、马新龙 第一作者:杨崟 中国石油大学(北京)李永峰、马新龙团队在ACS Nano发表最新成果,成功设计了一种名为“边缘-表面-内部”(E-S-I)的三维碳纳米结构…
-
中南大学周江Angew:电化学-化学过程调控助力高性能Zn-MnO₂电池
尽管电解型Zn-MnO₂电池因其出色的输出电压和高理论容量而备受关注,但自由Mn³⁺的自发歧化反应以及无序沉积的非活性MnO₂导致Mn²⁺/MnO₂转换反应的可逆性较低,严重影响了…