分子动力学模拟
-
如何判断化学键是否断裂?
说明:化学键断裂是分子反应和材料失效的关键过程,涉及电子结构重排和能量耗散。通过理论计算方法,如密度泛函理论(DFT)和分子动力学(MD),可以精确量化这一转变。 本文华算科技聚焦…
-
什么是阴离子效应?从定义到应用——解析阴离子对反应速率与产物的调控机制
说明:这篇文章华算科技详细介绍了阴离子效应,包括其定义、原理、机制及应用。通过丰富的实例和科学分析,阐述了阴离子如何通过静电相互作用、氢键作用和溶剂化作用等影响化学反应的速率、方向…
-
自组装分子动力学模拟:原理、方法、挑战与应用
说明:本文华算科技介绍了自组装分子动力学模拟的基本概念、实现方法与研究价值。通过原子级或粗粒化模型结合增强采样与合适的描述量,模拟能再现分子从无序到有序的演化轨迹,揭示成核机制和动…
-
能垒:概念、计算与跨学科应用
说明:本文华算科技系统阐述能垒的基本概念、计算方法和科学价值。文章基于过渡态理论、弹性带方法和分子动力学模拟等计算技术,深入分析能垒在预测反应速率、材料性能调控和反应路径设计中的关…
-
固体电解质界面膜(SEI膜):理论基础与电池应用
说明:本文华算科技从理论计算的角度,系统介绍固体电解质界面膜(Solid Electrolyte Interphase, SEI膜)的基本概念、核心原理及其在锂离子电池中的研究进展…
-
什么是氢键有机框架(HOF)?
说明:本文华算科技系统介绍了氢键有机框架(HOF)这一新兴材料的概念、特点及潜在应用。 HOF依靠氢键作用自组装成多孔结构,相较MOF和COF更轻盈灵活,具备良好的可逆性和环境友好…
-
VASP计算COHP常见问题与解决方案
VASP(Vienna Ab initio Simulation Package)是一种广泛应用于材料科学和量子力学计算的软件,尤其在第一性原理计算中具有重要地位。VASP能够进行…
-
正极电解质界面膜(CEI):计算化学解析电解液分解与界面稳定化机制
说明:本文华算科技系统介绍了正极电解质界面膜(CEI)的形成、研究方法及重要性。CEI是一层在电池正极表面自发生成的保护膜,能抑制副反应并提升电池寿命。 从计算化学角度,利用DFT…
-
MXene能做什么计算?
说明:本文华算科技系统介绍了MXene材料在计算化学研究中的应用。MXene是一类新兴二维材料,具有高导电性和表面可调性。通过DFT可揭示其电子结构和吸附性能,分子动力学则可研究离…
-
孔道限域:从纳米孔道到高性能材料的设计策略
说明:孔道限域是指分子、离子或气体在纳米尺度孔道中运动时受到的空间、能量和相互作用限制。本文华算科技系统解析了孔道限域原理、直观物理描述以及未来材料设计。同时从计算化学的角度揭示了…