材料科学
-
材料性能提升的三大策略:晶相工程、缺陷工程与掺杂工程
说明:本文华算科技主要介绍了晶相工程、缺陷工程和掺杂工程三种材料改性策略。晶相工程通过调控晶体结构优化材料性能;缺陷工程通过引入和调控缺陷改善电子结构和离子传输;掺杂工程通过引入异…
-
高熵合金配置熵的计算、阈值判断与设计指导
说明:高熵合金(High-Entropy Alloys, HEAs)作为一种新型多主元合金,以其高配置熵驱动的单相固溶体结构和优异力学性能(如高强度、高温稳定性)而备受关注。 “高…
-
什么是表面重构?定义、影响因素与调控策略
说明:本文华算科技研究了表面重构现象,包括其定义、影响因素、原位表征技术和调控策略,旨在通过结构设计和界面耦合工程实现对材料表面重构行为的有序控制,以优化材料性能。 什么是表面重构…
-
什么是界面工程?概念、本质与调控手段指南
说明:本文华算科技系统介绍了界面工程的概念、物理化学本质及调控手段,阐述了材料界面在性能优化中的关键作用。读者可从中掌握界面设计的基本原理与调控策略,学会如何通过结构、化学与能态调…
-
高熵材料怎么判断高熵?配位熵、混合焓与多尺度熵耦合的DFT计算与实验验证
说明:本文华算科技介绍了判断高熵材料“高熵”的理论与计算方法,说明如何将配位熵与混合焓、振动与电子熵随温度耦合,通过DFT估算ΔHmix、统计热力学计算Sconf,并以ΔG(T)评…
-
什么是电子局域密度函数ELF?
说明:本文华算科技介绍了电子局域函数(ELF)的基本概念、计算方法及其在材料科学中的应用,重点阐述了ELF如何量化电子局域化程度以识别化学键类型、定位孤对电子。 并结合密度泛函理论…
-
一文说清d带中心:定义、计算与性能预测全解析
说明:本文华算科技系统阐述了材料科学与催化学领域中的核心概念:d带中心。本文将从其基本定义、计算方法及其在催化活性预测等领域的广泛应用三个层面展开,旨在为读者提供一个全面且深入的理…
-
内建电场:电子/光电子/催化领域的隐形驱动力是如何产生的?
说明:本文华算科技探讨了内建电场在不同材料体系中的形成机理及其对电荷行为和能量转换过程的影响,揭示了内建电场在电子、光电子、催化和能量转换等领域的关键作用。 什么是内建电场 内建电…
-
一文读懂光催化技术!半导体/等离激元/金属有机框架催化剂的工作原理与选型指南
说明:光催化是一项利用光能驱动化学反应的绿色技术。本文系统阐述了光催化的基本定义、核心工作原理,并对半导体、金属有机框架及等离激元等主要光催化类型进行了比较分析,旨在为读者提供一个…
-
什么是d带中心?光催化/电催化中通过界面工程调控d带提升催化剂性能的关键
说明:本文华算科技介绍了d带中心的基本概念、理论计算方法及其在催化中的应用,重点阐述了d带中心作为过渡金属电子结构关键参数如何影响吸附键稳定性,并结合密度泛函理论(DFT)等计算方…
-
MoS₂的分类与特性:晶体结构、形貌与电学性质的系统性分析
说明:本文华算科技旨在基于现有研究,从晶体结构与相态、形貌与维度、电学性质三个核心维度,对MoS₂进行系统性的分类和深入阐述,以期为相关领域的科研与应用提供清晰的参考框架。 按…
-
什么是扩散能垒?全面解读概念、计算逻辑,为材料领域研究者提供理论参考
说明:本文华算科技系统阐述了扩散能垒的基本概念、核心计算方法,并深入探讨了其在揭示材料内在性能、预测材料稳定性以及指导工艺设计等方面的重要作用。旨在为材料科学与工程领域的研究者提供…
-
高熵合金(HEAs):定义、原理与计算方法
说明:本文华算科技从理论计算的角度,系统介绍高熵合金(High-Entropy Alloys, HEAs)的基本概念、核心原理及其在材料科学中的研究进展。 内容涵盖高熵合金的定义、…
-
压电效应:从基础理论到实际应用
说明:本文华算科技系统地探讨了压电效应的基本概念、晶体结构特征,以及压电催化和压电光催化的机理,揭示了机械应力与电极化之间的耦合关系及其在催化反应中的应用。 什么是压电效应 压电效…
-
共沉淀法:实现组分均匀分布与结构可控合成
说明:本文华算科技系统介绍了共沉淀法的基本原理、机制结构及其在材料合成中的应用。读者可从中了解共沉淀法的化学本质、控制因素及其在多尺度材料构建中的关键作用,掌握如何通过调控反应条件…
-
d带中心全解析:电子结构描述符的起源、内涵与实战指南
说明:本文华算科技将系统阐述d带中心的定义、其作为关键描述符的原因,以及该理论如何指导实际的催化剂设计。 什么是d带中心 定义与物理意义 d带中心是催化和表面科学领域,…
-
晶体缺陷:种类、引入方法与表征技术全解析
说明:本文华算科技主要介绍了晶体缺陷在材料中的重要作用,包括晶体缺陷的种类、引入缺陷的方法(如热还原法、等离子体技术、球磨法等),以及表征缺陷的技术(如透射电子显微镜、X射线光电子…
-
MXene:表面终端工程与性能优化
说明:本文华算科技旨在说明MXene表面终端(如-F、-O、-OH等)是其性能调控的关键。通过终端工程可主动设计其电化学、催化及物理性质,实现性能优化,是当前MXene研究的核心方…
-
一文说清“氮掺杂石墨烯”:机理、性能与应用
说明:本文华算科技介绍了氮掺杂石墨烯的掺杂机理、键合构型及其对电子结构和电化学性能的调控作用,如何通过精准掺杂设计能带隙和活性位点,从而高效开发高性能电催化剂、超级电容器和电池电极…
-
表面结构效应:原子尺度机制与跨尺度表征方法
说明:本文华算科技主要介绍了表面结构效应及其机制、作用和表征方法。表面结构效应源于晶体表面原子配位不完整和对称性破坏。其机制包括电子结构重排和表面重构,影响电荷转移、化学反应活性等…