机器学习
-
顶刊综述|颠覆科研!机器学习如何让钙钛矿太阳能电池效率飙升?
全球能源危机步步紧逼,传统化石燃料已无法满足需求,而钙钛矿太阳能电池以26.1%的超高效率(远超传统材料!),成为新能源赛道的“黑马”。但它的致命弱点——研发周期长、成本高,让科学…
-
顶刊综述|机器学习在二维材料中的运用
1. 引言 自石墨烯被发现以来,二维材料因其独特的物理和化学性质而受到广泛关注。这些材料具有丰富的内部自由度(如自旋、激子、谷、亚晶格和层伪自旋),以及通过精确选择堆叠顺序和相对晶…
-
能源设计顶尖综述|从第一性原理到机器学习:计算设计如何重塑能源材料未来?
引言:能源材料的数字化革命 在碳中和与能源转型的全球浪潮中,能源材料的高效设计与发现成为科技突破的核心。传统实验方法受限于“试错”周期长、成本高,而计算材料学的兴起正通过“原子级模…
-
机器学习力场BAMBOO:液体电解质研发的“AI加速器”——突破传统模拟瓶颈,精准预测电解液性质
引言:液体电解质的挑战与AI的机遇 在锂离子电池中,液体电解质是连接正负极的“血液”,其性能直接影响电池的能量密度、循环寿命和安全性。然而,现有商用电解液多为多组分碳酸酯体系,实验…
-
深度学习:让机器看见世界的多层智慧
如果说传统机器学习是“手工雕刻”,深度学习(Deep Learning)则像一场“自我生长”的智能革命——通过模仿人脑神经网络的层次化结构,它让机器具备了从原始数据中自动提取抽象特…
-
卷积神经网络(CNN):让机器看懂世界的视觉大师
卷积神经网络(Convolutional Neural Network, CNN)是深度学习中专门处理网格结构数据(如图像、视频、音频)的里程碑式模型。它通过模仿生物视觉系统的层次…
-
强化学习:让机器在试错中进化的人工智能教练
如果说监督学习是“手把手教学”,无监督学习是“自主探索”,那么强化学习(Reinforcement Learning, RL)则像一场刺激的生存游戏——机器作为智能体(Agent)…
-
势不可挡!机器学习助力材料/化学!
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…
-
机器学习电催化培训:线性模型/模型评价/约束项/神经网络/分类算法/回归算法/集成学习/XGBoost/描述符/预处理
机器学习是一种通过训练模型来识别模式、预测结果和优化过程的技术,电催化则涉及利用电流来促进化学反应的过程。机器学习与电催化本是两个互不相关的领域,然而,近年来机器学习与电催化的结合…
-
监督学习:让机器学会“标准答案”的智能教练
如果把机器学习比作学生,监督学习(Supervised Learning)就像一位严格的家教——它会先给机器提供大量带有标准答案的习题(训练数据),让机器通过反复练习总结规律,最终…
-
无监督学习:让机器成为数据世界的探险家
如果说监督学习是“老师带学生”,无监督学习(Unsupervised Learning)则更像一场没有地图的探险——机器需要从无标签数据中自主发现隐藏规律,揭示人类未曾察觉的深层联…
-
小白也能懂得机器学习算法介绍
想象一下,你教一个孩子识别猫和狗:你不会给他写一本《猫狗鉴别公式手册》,而是给他看大量猫狗图片,让他自己总结规律。机器学习算法就是计算机的“学习指南”——它通过分析数据自动发现规律…
-
当机器开始学习:你的行业会被怎样重新定义?
让机器学会思考:探索机器学习的无限可能 在人工智能蓬勃发展的今天,机器学习(Machine Learning)正悄然改变着人类认知世界的方式。它不仅是科技领域的革命性突破,更是一把…
-
材料人必备!Python+机器学习,零基础入门科研新风口!
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…
-
机器学习究竟能预测哪些性质?
在材料科学的前沿领域,机器学习正以强大的数据处理和预测能力,掀起一场革命性的变革。随着材料数据的海量增长,传统的材料性质预测方法面临着诸多局限,机器学习算法的出现,为这一难题提供了…
-
中科大课题组招收能源催化和机器学习相关方向博士生、博后及科研助理
课题组研究领域及方 1.基于中科大机器化学家平台的催化材料高通量筛选; 2.新型电催化材料制备及催化机理研究; 3.原位谱学表征方法监测催化反应动态过程; 4.理论计算及机器学习 …
-
机器学习这么火,怎么应用到材料/化学/电催化领域?
随着研究技术的发展,化学理论与计算化学逐渐成为化学与材料科学研究中重要的辅助工具。近年,大量计算与实验数据的产生使得数据分析变得愈加重要,各种数据后处理方法也成为研究者们需要掌握的…
-
机器学习基础培训:合金催化、单原子催化、CO2RR、MOF、d带中心、钙钛矿、STM、熔点、有机小分子、电极涂层、体积模量
近年,机器学习这个词越来越频繁的进入大家的视野。作为一个时髦的工具,机器学习似乎无所不能,下围棋?用机器学习!解蛋白?用机器学习!开发材料?用机器学习!化学这门学科长期以来主要依赖…
-
Nature子刊:可解释机器学习方法用于快速搜索光催化剂
机器学习(ML)与高通量(HT)计算耦合的方法不仅可以加速寻找期望的材料,而且还能揭开底层过程的物理原理。然而,此类研究通常无法确定所发现的关键设计原则的来源,即除了发现有前途的材…
-
剑桥大学Nature: 预测乳腺癌治疗反应的多组学机器学习预测器
乳腺癌是恶性细胞和肿瘤微环境的复杂生态系统,这些肿瘤生态系统的组成及其内部的相互作用会促进肿瘤治疗时的细胞毒性反应。然而,值得注意的是,在未治疗的肿瘤中识别预测治疗反应特征的研究大…