DFT计算
-
什么是分子静电势?理论定义到反应活性预测、分子间作用的多维度应用指南
本文系统介绍了分子静电势(MEP)的基本理论及其在化学研究中的重要意义。分子静电势通过描述分子周围空间的静电势分布,能够直观反映分子的电荷分布特征,为理解分子极性、反应活性及分子间…
-
掺杂·缺陷·复合模型:DFT计算如何揭示材料性能?| 第一性原理分析指南
在材料科学中,掺杂、缺陷和复合模型是理解材料性能的关键因素。密度泛函理论(DFT)作为一种强大的计算工具,被广泛应用于这些模型的模拟与分析。DFT基于量子力学原理,通过计算材料的电…
-
如何确定DFT计算中GGA+U的U值?强关联体系修正参数优化指南
在密度泛函理论(DFT)计算中,GGA+U(广义梯度近似+Hubbard U)方法是一种用于处理强关联电子体系(如过渡金属氧化物、氮化物等)的重要修正方法。 该方法通过引入Hubb…
-
如何用DFT解析化学键?——从电子结构到键能计算的深度解析
密度泛函理论(DFT)是一种基于量子力学的计算方法,广泛应用于化学、材料科学、物理等领域,用于研究分子和材料的电子结构、化学键性质、反应动力学等。在化学键分析中,DFT提供了多种多…
-
如何利用DFT计算吸附能与反应能垒,预测催化反应选择性?
密度泛函理论(DFT)在催化反应选择性研究中扮演着至关重要的角色。它不仅能够揭示催化反应的微观机制,还能通过计算吸附能、反应能垒、电子结构等参数,解释反应产物的选择性。以下将从多个…
-
过渡态概念、理论与应用纵览
过渡态是化学反应过程中,反应物转化为产物时必经的一个瞬时高能构型,它在反应坐标上对应于势能面的最高点(即一阶鞍点),是反应路径中能量壁垒的顶点。 这一概念由亨利·埃林(Henry …
-
吸附能为什么这么重要?
吸附能是化学、材料科学和工业应用中一个极其重要的物理量,它不仅在催化反应中起着决定性作用,还在环境治理、能源转换、材料设计等多个领域具有广泛的应用价值。 吸附能的大小直接影响了反应…
-
自由能台阶图有什么作用?
自由能台阶图是电催化研究中不可或缺的工具,它通过图形化的方式展示了反应路径中各步骤的吉布斯自由能变化(ΔG),从而帮助研究人员理解反应的热力学行为和动力学特性。自由能台阶图不仅能够…
-
LDH催化OER性质
LDH(层状双氢氧化物)作为一种具有独特结构和优异催化性能的材料,近年来在氧析出反应(OER)中表现出显著的潜力。LDH的催化性质主要与其结构特性、金属组成、表面缺陷以及电子结构密…
-
什么是SRR反应机理?—锂硫电池中硫还原的热力学、动力学及理论研究
本文深入探讨了锂硫电池中硫还原反应(SRR)的复杂机理,从S₈到Li₂S的多步转化过程涉及多种中间产物(如Li₂Sₙ),其反应路径直接影响电池的容量、循环稳定性和倍率性能。通过热力…