计算干货
-
不同缺陷浓度如何建模? | 多尺度方法在半导体/合金材料性能预测中的应用策略
在材料科学中,缺陷浓度的建模是理解材料性能、优化材料设计和预测材料行为的关键环节。不同缺陷浓度的建模方法需要根据缺陷类型、浓度范围以及材料体系的特点进行选择和调整。以下将从建模原理…
-
什么是缺陷形成能? | 材料缺陷稳定性与性能调控的核心量化参数
缺陷形成能是材料科学中一个非常重要的概念,尤其在半导体、金属和二维材料等领域中具有广泛的应用。它定义为在完整晶体中引入特定缺陷(如空位、间隙、杂质等)所需的能量变化,通常以电子伏特…
-
什么是决速步? | 反应动力学中的速率控制步骤与催化剂设计核心原理
决速步(Rate-Determining Step, RDS)是化学反应中决定整体反应速率的关键步骤。在复杂的多步反应中,决速步通常是反应路径中最慢的一步,其速率决定了整个反应的效…
-
掺杂模型是什么? | 半导体/光电材料电子结构调控的核心机制
掺杂模型是材料科学和半导体物理中的一个重要研究领域,它通过在材料中引入异质元素或缺陷,可以显著改变材料的电子结构、光学性质、热导率等物理特性。 掺杂模型不仅在理论研究中具有重要意义…
-
什么是表面能? | 材料界面能量与润湿性/粘附性调控的核心参数
表面能是材料科学、化学工程、物理化学等多个领域中的一个核心概念,它描述了物质在两相界面处由于分子间作用力不平衡而产生的能量状态。表面能的大小直接影响材料的润湿性、粘附性、疏水性、防…
-
DFT计算中如何引入电场? | 有限电场方法与催化/能带调控应用解析
在材料科学与化学领域,密度泛函理论(DFT)作为一种强大的计算工具,广泛应用于电子结构、能带结构、材料性能等的模拟与预测。 其中,DFT计算中引入电场是一种重要的手段,用于研究电场…
-
DFT如何计算加压强?高压下材料结构与电子性质的计算方法
DFT(密度泛函理论)计算加压强是材料科学和凝聚态物理中的一项重要技术,广泛应用于研究物质在高压下的结构、电子性质和热力学行为。 DFT通过计算系统的电子结构来预测其能量、压强等宏…
-
DFT计算分析电荷转移方法有哪些?差分密度/Bader电荷/态密度详解
密度泛函理论(Density Functional Theory,DFT)是一种广泛应用于材料科学、化学和物理学领域的量子化学计算方法。它通过计算系统的电子密度来描述分子或固体的电…
-
掺杂·缺陷·复合模型:DFT计算如何揭示材料性能?| 第一性原理分析指南
在材料科学中,掺杂、缺陷和复合模型是理解材料性能的关键因素。密度泛函理论(DFT)作为一种强大的计算工具,被广泛应用于这些模型的模拟与分析。DFT基于量子力学原理,通过计算材料的电…
-
L-H机制和E-R机制有什么区别?催化反应两大机理的深度解析
催化反应机理是催化化学中的核心问题之一,其中Langmuir-Hinshelwood(L-H)机制和Eley-Rideal(E-R)机制是两种经典的反应机制。这两种机制在催化反应中…
-
尺寸效应如何调控催化性能?| 多尺度机制与设计策略解析
尺寸效应的定义与机制 尺寸效应是指材料的物理化学性质随着其尺寸(尺度)的改变而发生显著变化的现象。在催化领域,尺寸效应主要体现在催化剂的几何结构、表面原子比例、电子结构以及反应路径…
-
差分电荷密度图(DCDM)有什么用? | 电子结构分析与应用案例详解
差分电荷密度图(Difference Charge Density Map, DCDM)是一种在材料科学、化学、物理等领域中广泛应用的电子结构分析工具。它通过比较不同状态或结构的电…
-
d带中心理论如何调控催化?过渡金属电子结构与催化活性解析
d带中心理论是催化科学中一个核心且具有广泛应用的理论框架,它通过描述过渡金属的电子结构(尤其是d轨道的能级分布)与催化性能之间的关系,为催化剂的设计与优化提供了重要的理论指导。 该…
-
如何确定DFT计算中GGA+U的U值?强关联体系修正参数优化指南
在密度泛函理论(DFT)计算中,GGA+U(广义梯度近似+Hubbard U)方法是一种用于处理强关联电子体系(如过渡金属氧化物、氮化物等)的重要修正方法。 该方法通过引入Hubb…
-
单原子结构有哪些类型?揭秘催化、能源与传感领域的关键应用与进展
单原子结构是指由单个原子组成的结构,通常在材料科学、化学和物理等领域中具有重要的研究价值。单原子结构不仅在催化反应中表现出优异的性能,还在能源存储、电子器件、传感器等领域有着广泛的…
-
VASP结构优化:究竟在优化什么?揭秘材料基态结构与能量最小化的第一性原理计算
VASP(Vienna Ab initio Simulation Package)是一种广泛应用于材料科学和凝聚态物理领域的第一性原理计算软件,其核心功能之一是进行结构优化。结构优…
-
差分电荷、Bader电荷、Mulliken电荷有什么区别?——三种电荷分析方法全解析
在化学和材料科学中,电荷分析是理解分子间相互作用、化学键性质以及材料电子结构的重要工具。 差分电荷、Bader电荷和Mulliken电荷是三种常用的电荷分析方法,它们分别从不同的角…
-
如何用DFT解析化学键?——从电子结构到键能计算的深度解析
密度泛函理论(DFT)是一种基于量子力学的计算方法,广泛应用于化学、材料科学、物理等领域,用于研究分子和材料的电子结构、化学键性质、反应动力学等。在化学键分析中,DFT提供了多种多…
-
如何选择吸附位点?——从理论到实践的科学解析
选择吸附位点是材料科学、化学工程、环境科学等领域中一个关键且复杂的问题。吸附位点的选择不仅影响吸附效率,还决定了材料的性能、稳定性以及在实际应用中的可行性。因此,如何科学、系统地选…
-
如何通过RDF分析材料结构?——详解径向分布函数的原理与应用
径向分布函数(Radial Distribution Function,简称RDF)是材料科学中用于分析材料微观结构的重要工具。它通过量化原子或分子在空间中的分布情况,揭示材料的短…