机器学习
-
强化学习:让机器在试错中进化的人工智能教练
如果说监督学习是“手把手教学”,无监督学习是“自主探索”,那么强化学习(Reinforcement Learning, RL)则像一场刺激的生存游戏——机器作为智能体(Agent)…
-
势不可挡!机器学习助力材料/化学!
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…
-
决策树算法:像人类一样做决策的智能流程图
决策树(Decision Tree)是一种模仿人类决策过程的机器学习算法,通过一系列“是非判断”将复杂问题层层拆解,最终得出预测结果。因其直观易懂、适用性广的特性,它被誉为“最像人…
-
机器学习电催化培训:线性模型/模型评价/约束项/神经网络/分类算法/回归算法/集成学习/XGBoost/描述符/预处理
机器学习是一种通过训练模型来识别模式、预测结果和优化过程的技术,电催化则涉及利用电流来促进化学反应的过程。机器学习与电催化本是两个互不相关的领域,然而,近年来机器学习与电催化的结合…
-
监督学习:让机器学会“标准答案”的智能教练
如果把机器学习比作学生,监督学习(Supervised Learning)就像一位严格的家教——它会先给机器提供大量带有标准答案的习题(训练数据),让机器通过反复练习总结规律,最终…
-
无编程基础如何攻克材料机器学习?
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…
-
无监督学习:让机器成为数据世界的探险家
如果说监督学习是“老师带学生”,无监督学习(Unsupervised Learning)则更像一场没有地图的探险——机器需要从无标签数据中自主发现隐藏规律,揭示人类未曾察觉的深层联…
-
小白也能懂得机器学习算法介绍
想象一下,你教一个孩子识别猫和狗:你不会给他写一本《猫狗鉴别公式手册》,而是给他看大量猫狗图片,让他自己总结规律。机器学习算法就是计算机的“学习指南”——它通过分析数据自动发现规律…
-
当机器开始学习:你的行业会被怎样重新定义?
让机器学会思考:探索机器学习的无限可能 在人工智能蓬勃发展的今天,机器学习(Machine Learning)正悄然改变着人类认知世界的方式。它不仅是科技领域的革命性突破,更是一把…
-
材料人必备!Python+机器学习,零基础入门科研新风口!
2025年伊始,机器学习已在各个领域取得了巨大的发展,当下炙手可热的DeepSeek和Manus,其本质就是机器学习。从科学应用的角度,无论材料、化学、生物、物理、医学、工程等领域…