机器学习
-
橡树岭实验室Nature子刊: 基于可逆神经网络的二维材料逆设计
根据需要轻松设计具有所选功能特性的新型材料的能力代表了材料发现的下一个前沿。然而,以计算上易于处理的方式彻底有效地采样整个设计空间仍然是一项极具挑战性的任务。 在此,美国橡树岭国家…
-
利物浦大学Angew: 机器学习用于预测MOF中客体的可及性
金属和连接体的选择共同决定了金属-有机骨架(MOF)的结构和客体可及性,但大量可能的金属-连接体组合使得合成组分的选择具有挑战性。 在此,利物浦大学Matthew J. Rosse…
-
ACS AMI: 机器学习+DFT指导设计高效的双功能OER/ORR电催化剂
寻找用于可持续和可再生清洁能源的高效双功能析氧/还原反应 (OER/ORR) 电催化剂至关重要。机器学习(ML)已被用于帮助研究高效双功能催化剂候选者的催化活性来源,其在催化剂研究…
-
Science子刊:机器学习实现多元素异质结构的加速设计和合成
在材料发现工作中,合成能力远远超过从中提取有意义数据的能力。为了弥补这一差距,需要机器学习方法来减少识别所需材料的搜索空间。 在此,美国西北大学Chad A. Mirkin等人提出…
-
纽约州立大学ACS AMI: 机器学习预测甲基铵锡基钙钛矿中的最佳Br掺杂
作为卤化铅钙钛矿潜在替代者的有机-无机卤化锡钙钛矿家族(MASnX3,其中X = Cl、Br、I)由于其带隙可调性,可通过用溴化学取代碘来覆盖广泛的可见太阳光谱。尽管这些钙钛矿太阳…
-
重大胡晓松/谢翌EnSM: 敏感性分析+深度学习实现电池模型的无损参数识别
基于物理的电化学模型可以深入了解电池内部状态,并在电池设计优化及汽车和航空航天应用中显示出巨大潜力。然而,电化学模型的复杂性使其难以准确获得参数值,此外,电化学参数的识别通常通过耗…
-
哈佛大学AFM: 机器学习指导逆向设计充气软膜
第一作者:Antonio Elia Forte 通讯作者:Antonio Elia Forte, Katia Bertoldi 第一通讯单位:哈佛大学 研究背景 可从平面变形为3D…
-
上交李金金ACS AMI: 仅需0.005秒,集成学习用于探索新型双钙钛矿!
无铅双钙钛矿(A2BB′X6)被认为是单钙钛矿的稳定和绿色光电替代品,但可能表现出间接带隙和高有效质量,从而限制了它们的最大光伏效率。此外,常规的实验试错法和高通量计算无法快速识别…
-
机器学习顶刊汇总:Science子刊、Adv.Sci.、JMCA、ACS AMI、ES&T等成果
1. 加州大学伯克利分校Science子刊: 监督学习预测蛋白质对碳纳米管的吸附 工程纳米粒子有利于生物技术应用,包括生物分子传感和递送。然而,在生物系统中测试纳米技术的兼容性和功…
-
耶鲁&麻省理工Science子刊: 机器学习揭示聚合物膜中的关键离子选择性机制
设计用于高精度分离的单物种选择性膜需要对控制溶质传输的分子相互作用有基本的了解。各种离子特异性会影响离子传输,从而影响离子选择性。然而,每个特性对选择性运输的相对重要性仍然很大程度…